Spaces:
Runtime error
Runtime error
File size: 5,113 Bytes
6200ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import spaces
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
import os
import cv2
huggingface_token = os.environ.get('HF_TOKEN')
# Download the Meta-Llama-3.1-8B-Instruct model
hf_hub_download(
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/Mistral-Nemo-Instruct-2407-GGUF",
filename="Mistral-Nemo-Instruct-2407-Q5_K_M.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/gemma-2-2b-it-GGUF",
filename="gemma-2-2b-it-Q6_K_L.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/openchat-3.6-8b-20240522-GGUF",
filename="openchat-3.6-8b-20240522-Q6_K.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/Llama-3-Groq-8B-Tool-Use-GGUF",
filename="Llama-3-Groq-8B-Tool-Use-Q6_K.gguf",
local_dir="./models",
token=huggingface_token
)
llm = None
llm_model = None
cv2.setNumThreads(1)
@spaces.GPU()
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
global llm
global llm_model
# Load model only if it's not already loaded or if a new model is selected
if llm is None or llm_model != model:
try:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81, # Adjust based on available GPU resources
n_batch=1024,
n_ctx=8192,
)
llm_model = model
except Exception as e:
return f"Error loading model: {str(e)}"
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add user and assistant messages to the history
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Stream the response
try:
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
except Exception as e:
yield f"Error during response generation: {str(e)}"
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown([
'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf',
'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf',
'gemma-2-2b-it-Q6_K_L.gguf',
'openchat-3.6-8b-20240522-Q6_K.gguf',
'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf'
],
value="gemma-2-2b-it-Q6_K_L.gguf",
label="Model"
),
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with lots of Models and LLMs using llama.cpp",
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()
|