File size: 5,113 Bytes
6200ce9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import spaces
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
import os
import cv2

huggingface_token = os.environ.get('HF_TOKEN')

# Download the Meta-Llama-3.1-8B-Instruct model
hf_hub_download(
    repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
    filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
    local_dir="./models",
    token=huggingface_token
)

hf_hub_download(
    repo_id="bartowski/Mistral-Nemo-Instruct-2407-GGUF",
    filename="Mistral-Nemo-Instruct-2407-Q5_K_M.gguf",
    local_dir="./models",
    token=huggingface_token
)

hf_hub_download(
    repo_id="bartowski/gemma-2-2b-it-GGUF",
    filename="gemma-2-2b-it-Q6_K_L.gguf",
    local_dir="./models",
    token=huggingface_token
)

hf_hub_download(
    repo_id="bartowski/openchat-3.6-8b-20240522-GGUF",
    filename="openchat-3.6-8b-20240522-Q6_K.gguf",
    local_dir="./models",
    token=huggingface_token
)

hf_hub_download(
    repo_id="bartowski/Llama-3-Groq-8B-Tool-Use-GGUF",
    filename="Llama-3-Groq-8B-Tool-Use-Q6_K.gguf",
    local_dir="./models",
    token=huggingface_token
)


llm = None
llm_model = None

cv2.setNumThreads(1)

@spaces.GPU()
def respond(

    message,

    history: list[tuple[str, str]],

    model,

    system_message,

    max_tokens,

    temperature,

    top_p,

    top_k,

    repeat_penalty,

):
    chat_template = MessagesFormatterType.GEMMA_2

    global llm
    global llm_model

    # Load model only if it's not already loaded or if a new model is selected
    if llm is None or llm_model != model:
        try:
            llm = Llama(
                model_path=f"models/{model}",
                flash_attn=True,
                n_gpu_layers=81,  # Adjust based on available GPU resources
                n_batch=1024,
                n_ctx=8192,
            )
            llm_model = model
        except Exception as e:
            return f"Error loading model: {str(e)}"

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    # Add user and assistant messages to the history
    for msn in history:
        user = {'role': Roles.user, 'content': msn[0]}
        assistant = {'role': Roles.assistant, 'content': msn[1]}
        messages.add_message(user)
        messages.add_message(assistant)

    # Stream the response
    try:
        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False
        )

        outputs = ""
        for output in stream:
            outputs += output
            yield outputs
    except Exception as e:
        yield f"Error during response generation: {str(e)}"

demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Dropdown([
                'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf',
                'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf',
                'gemma-2-2b-it-Q6_K_L.gguf',
                'openchat-3.6-8b-20240522-Q6_K.gguf',
                'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf'
            ],
            value="gemma-2-2b-it-Q6_K_L.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Chat with lots of Models and LLMs using llama.cpp",
    chatbot=gr.Chatbot(
        scale=1,
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()