File size: 4,931 Bytes
7403df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3775ccc
 
7403df3
 
 
 
 
 
 
 
 
 
 
 
08f2e84
7403df3
 
 
 
 
 
 
 
 
 
 
9f18ec6
 
7403df3
 
 
9f18ec6
 
 
 
 
 
 
 
 
7403df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2037b55
 
 
 
bf7095b
7403df3
 
 
 
 
070a924
7403df3
070a924
7403df3
 
5b949bd
8212759
7403df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf7095b
 
7403df3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

llm = None
llm_model = None

hf_hub_download(
    repo_id="unsloth/Reflection-Llama-3.1-70B-GGUF",
    filename="Reflection-Llama-3.1-70B.Q3_K_L.gguf",
    local_dir = "./models"
)



def get_messages_formatter_type(model_name):
    if "Llama" in model_name:
        return MessagesFormatterType.LLAMA_3
    else:
        raise ValueError(f"Unsupported model: {model_name}")


@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    global llm
    global llm_model
    
    chat_template = get_messages_formatter_type(model)
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model
    
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

description = """<p><center>
<a href="https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B" target="_blank">[Reflection Llama 3.1 70B Model Page]</a>
<a href="https://huggingface.co/bartowski/Reflection-Llama-3.1-70B-GGUF" target="_blank">[70B Model GGUF]</a>
</center></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                "Reflection-Llama-3.1-70B-Q3_K_M.gguf"
            ],
            value="Reflection-Llama-3.1-70B-Q3_K_M.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.", label="System message"),
        gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#16141c",
        block_background_fill_dark="#16141c",
        block_border_width="1px",
        block_title_background_fill_dark="#1e1c26",
        input_background_fill_dark="#292733",
        button_secondary_background_fill_dark="#24212b",
        border_color_accent_dark="#343140",
        border_color_primary_dark="#343140",
        background_fill_secondary_dark="#16141c",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#292733",
    ),
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Reflection Llama-3.1 70B",
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()