File size: 5,809 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ppocr.metrics.det_metric import DetMetric


class TableStructureMetric(object):
    def __init__(self,
                 main_indicator='acc',
                 eps=1e-6,
                 del_thead_tbody=False,
                 **kwargs):
        self.main_indicator = main_indicator
        self.eps = eps
        self.del_thead_tbody = del_thead_tbody
        self.reset()

    def __call__(self, pred_label, batch=None, *args, **kwargs):
        preds, labels = pred_label
        pred_structure_batch_list = preds['structure_batch_list']
        gt_structure_batch_list = labels['structure_batch_list']
        correct_num = 0
        all_num = 0
        for (pred, pred_conf), target in zip(pred_structure_batch_list,
                                             gt_structure_batch_list):
            pred_str = ''.join(pred)
            target_str = ''.join(target)
            if self.del_thead_tbody:
                pred_str = pred_str.replace('<thead>', '').replace(
                    '</thead>', '').replace('<tbody>', '').replace('</tbody>',
                                                                   '')
                target_str = target_str.replace('<thead>', '').replace(
                    '</thead>', '').replace('<tbody>', '').replace('</tbody>',
                                                                   '')
            if pred_str == target_str:
                correct_num += 1
            all_num += 1
        self.correct_num += correct_num
        self.all_num += all_num

    def get_metric(self):
        """
        return metrics {
                 'acc': 0,
            }
        """
        acc = 1.0 * self.correct_num / (self.all_num + self.eps)
        self.reset()
        return {'acc': acc}

    def reset(self):
        self.correct_num = 0
        self.all_num = 0
        self.len_acc_num = 0
        self.token_nums = 0
        self.anys_dict = dict()


class TableMetric(object):
    def __init__(self,
                 main_indicator='acc',
                 compute_bbox_metric=False,
                 box_format='xyxy',
                 del_thead_tbody=False,
                 **kwargs):
        """

        @param sub_metrics: configs of sub_metric
        @param main_matric: main_matric for save best_model
        @param kwargs:
        """
        self.structure_metric = TableStructureMetric(
            del_thead_tbody=del_thead_tbody)
        self.bbox_metric = DetMetric() if compute_bbox_metric else None
        self.main_indicator = main_indicator
        self.box_format = box_format
        self.reset()

    def __call__(self, pred_label, batch=None, *args, **kwargs):
        self.structure_metric(pred_label)
        if self.bbox_metric is not None:
            self.bbox_metric(*self.prepare_bbox_metric_input(pred_label))

    def prepare_bbox_metric_input(self, pred_label):
        pred_bbox_batch_list = []
        gt_ignore_tags_batch_list = []
        gt_bbox_batch_list = []
        preds, labels = pred_label

        batch_num = len(preds['bbox_batch_list'])
        for batch_idx in range(batch_num):
            # pred
            pred_bbox_list = [
                self.format_box(pred_box)
                for pred_box in preds['bbox_batch_list'][batch_idx]
            ]
            pred_bbox_batch_list.append({'points': pred_bbox_list})

            # gt
            gt_bbox_list = []
            gt_ignore_tags_list = []
            for gt_box in labels['bbox_batch_list'][batch_idx]:
                gt_bbox_list.append(self.format_box(gt_box))
                gt_ignore_tags_list.append(0)
            gt_bbox_batch_list.append(gt_bbox_list)
            gt_ignore_tags_batch_list.append(gt_ignore_tags_list)

        return [
            pred_bbox_batch_list,
            [0, 0, gt_bbox_batch_list, gt_ignore_tags_batch_list]
        ]

    def get_metric(self):
        structure_metric = self.structure_metric.get_metric()
        if self.bbox_metric is None:
            return structure_metric
        bbox_metric = self.bbox_metric.get_metric()
        if self.main_indicator == self.bbox_metric.main_indicator:
            output = bbox_metric
            for sub_key in structure_metric:
                output["structure_metric_{}".format(
                    sub_key)] = structure_metric[sub_key]
        else:
            output = structure_metric
            for sub_key in bbox_metric:
                output["bbox_metric_{}".format(sub_key)] = bbox_metric[sub_key]
        return output

    def reset(self):
        self.structure_metric.reset()
        if self.bbox_metric is not None:
            self.bbox_metric.reset()

    def format_box(self, box):
        if self.box_format == 'xyxy':
            x1, y1, x2, y2 = box
            box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
        elif self.box_format == 'xywh':
            x, y, w, h = box
            x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2
            box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
        elif self.box_format == 'xyxyxyxy':
            x1, y1, x2, y2, x3, y3, x4, y4 = box
            box = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
        return box