File size: 11,777 Bytes
a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/LBH1024/CAN/models/can.py
https://github.com/LBH1024/CAN/models/counting.py
https://github.com/LBH1024/CAN/models/decoder.py
https://github.com/LBH1024/CAN/models/attention.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.nn as nn
import paddle
import math
'''
Counting Module
'''
class ChannelAtt(nn.Layer):
def __init__(self, channel, reduction):
super(ChannelAtt, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(), nn.Linear(channel // reduction, channel), nn.Sigmoid())
def forward(self, x):
b, c, _, _ = x.shape
y = paddle.reshape(self.avg_pool(x), [b, c])
y = paddle.reshape(self.fc(y), [b, c, 1, 1])
return x * y
class CountingDecoder(nn.Layer):
def __init__(self, in_channel, out_channel, kernel_size):
super(CountingDecoder, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.trans_layer = nn.Sequential(
nn.Conv2D(
self.in_channel,
512,
kernel_size=kernel_size,
padding=kernel_size // 2,
bias_attr=False),
nn.BatchNorm2D(512))
self.channel_att = ChannelAtt(512, 16)
self.pred_layer = nn.Sequential(
nn.Conv2D(
512, self.out_channel, kernel_size=1, bias_attr=False),
nn.Sigmoid())
def forward(self, x, mask):
b, _, h, w = x.shape
x = self.trans_layer(x)
x = self.channel_att(x)
x = self.pred_layer(x)
if mask is not None:
x = x * mask
x = paddle.reshape(x, [b, self.out_channel, -1])
x1 = paddle.sum(x, axis=-1)
return x1, paddle.reshape(x, [b, self.out_channel, h, w])
'''
Attention Decoder
'''
class PositionEmbeddingSine(nn.Layer):
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask):
y_embed = paddle.cumsum(mask, 1, dtype='float32')
x_embed = paddle.cumsum(mask, 2, dtype='float32')
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = paddle.arange(self.num_pos_feats, dtype='float32')
dim_d = paddle.expand(paddle.to_tensor(2), dim_t.shape)
dim_t = self.temperature**(2 * (dim_t / dim_d).astype('int64') /
self.num_pos_feats)
pos_x = paddle.unsqueeze(x_embed, [3]) / dim_t
pos_y = paddle.unsqueeze(y_embed, [3]) / dim_t
pos_x = paddle.flatten(
paddle.stack(
[
paddle.sin(pos_x[:, :, :, 0::2]),
paddle.cos(pos_x[:, :, :, 1::2])
],
axis=4),
3)
pos_y = paddle.flatten(
paddle.stack(
[
paddle.sin(pos_y[:, :, :, 0::2]),
paddle.cos(pos_y[:, :, :, 1::2])
],
axis=4),
3)
pos = paddle.transpose(
paddle.concat(
[pos_y, pos_x], axis=3), [0, 3, 1, 2])
return pos
class AttDecoder(nn.Layer):
def __init__(self, ratio, is_train, input_size, hidden_size,
encoder_out_channel, dropout, dropout_ratio, word_num,
counting_decoder_out_channel, attention):
super(AttDecoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.out_channel = encoder_out_channel
self.attention_dim = attention['attention_dim']
self.dropout_prob = dropout
self.ratio = ratio
self.word_num = word_num
self.counting_num = counting_decoder_out_channel
self.is_train = is_train
self.init_weight = nn.Linear(self.out_channel, self.hidden_size)
self.embedding = nn.Embedding(self.word_num, self.input_size)
self.word_input_gru = nn.GRUCell(self.input_size, self.hidden_size)
self.word_attention = Attention(hidden_size, attention['attention_dim'])
self.encoder_feature_conv = nn.Conv2D(
self.out_channel,
self.attention_dim,
kernel_size=attention['word_conv_kernel'],
padding=attention['word_conv_kernel'] // 2)
self.word_state_weight = nn.Linear(self.hidden_size, self.hidden_size)
self.word_embedding_weight = nn.Linear(self.input_size,
self.hidden_size)
self.word_context_weight = nn.Linear(self.out_channel, self.hidden_size)
self.counting_context_weight = nn.Linear(self.counting_num,
self.hidden_size)
self.word_convert = nn.Linear(self.hidden_size, self.word_num)
if dropout:
self.dropout = nn.Dropout(dropout_ratio)
def forward(self, cnn_features, labels, counting_preds, images_mask):
if self.is_train:
_, num_steps = labels.shape
else:
num_steps = 36
batch_size, _, height, width = cnn_features.shape
images_mask = images_mask[:, :, ::self.ratio, ::self.ratio]
word_probs = paddle.zeros((batch_size, num_steps, self.word_num))
word_alpha_sum = paddle.zeros((batch_size, 1, height, width))
hidden = self.init_hidden(cnn_features, images_mask)
counting_context_weighted = self.counting_context_weight(counting_preds)
cnn_features_trans = self.encoder_feature_conv(cnn_features)
position_embedding = PositionEmbeddingSine(256, normalize=True)
pos = position_embedding(cnn_features_trans, images_mask[:, 0, :, :])
cnn_features_trans = cnn_features_trans + pos
word = paddle.ones([batch_size, 1], dtype='int64') # init word as sos
word = word.squeeze(axis=1)
for i in range(num_steps):
word_embedding = self.embedding(word)
_, hidden = self.word_input_gru(word_embedding, hidden)
word_context_vec, _, word_alpha_sum = self.word_attention(
cnn_features, cnn_features_trans, hidden, word_alpha_sum,
images_mask)
current_state = self.word_state_weight(hidden)
word_weighted_embedding = self.word_embedding_weight(word_embedding)
word_context_weighted = self.word_context_weight(word_context_vec)
if self.dropout_prob:
word_out_state = self.dropout(
current_state + word_weighted_embedding +
word_context_weighted + counting_context_weighted)
else:
word_out_state = current_state + word_weighted_embedding + word_context_weighted + counting_context_weighted
word_prob = self.word_convert(word_out_state)
word_probs[:, i] = word_prob
if self.is_train:
word = labels[:, i]
else:
word = word_prob.argmax(1)
word = paddle.multiply(
word, labels[:, i]
) # labels are oneslike tensor in infer/predict mode
return word_probs
def init_hidden(self, features, feature_mask):
average = paddle.sum(paddle.sum(features * feature_mask, axis=-1),
axis=-1) / paddle.sum(
(paddle.sum(feature_mask, axis=-1)), axis=-1)
average = self.init_weight(average)
return paddle.tanh(average)
'''
Attention Module
'''
class Attention(nn.Layer):
def __init__(self, hidden_size, attention_dim):
super(Attention, self).__init__()
self.hidden = hidden_size
self.attention_dim = attention_dim
self.hidden_weight = nn.Linear(self.hidden, self.attention_dim)
self.attention_conv = nn.Conv2D(
1, 512, kernel_size=11, padding=5, bias_attr=False)
self.attention_weight = nn.Linear(
512, self.attention_dim, bias_attr=False)
self.alpha_convert = nn.Linear(self.attention_dim, 1)
def forward(self,
cnn_features,
cnn_features_trans,
hidden,
alpha_sum,
image_mask=None):
query = self.hidden_weight(hidden)
alpha_sum_trans = self.attention_conv(alpha_sum)
coverage_alpha = self.attention_weight(
paddle.transpose(alpha_sum_trans, [0, 2, 3, 1]))
alpha_score = paddle.tanh(
paddle.unsqueeze(query, [1, 2]) + coverage_alpha + paddle.transpose(
cnn_features_trans, [0, 2, 3, 1]))
energy = self.alpha_convert(alpha_score)
energy = energy - energy.max()
energy_exp = paddle.exp(paddle.squeeze(energy, -1))
if image_mask is not None:
energy_exp = energy_exp * paddle.squeeze(image_mask, 1)
alpha = energy_exp / (paddle.unsqueeze(
paddle.sum(paddle.sum(energy_exp, -1), -1), [1, 2]) + 1e-10)
alpha_sum = paddle.unsqueeze(alpha, 1) + alpha_sum
context_vector = paddle.sum(
paddle.sum((paddle.unsqueeze(alpha, 1) * cnn_features), -1), -1)
return context_vector, alpha, alpha_sum
class CANHead(nn.Layer):
def __init__(self, in_channel, out_channel, ratio, attdecoder, **kwargs):
super(CANHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.counting_decoder1 = CountingDecoder(self.in_channel,
self.out_channel, 3) # mscm
self.counting_decoder2 = CountingDecoder(self.in_channel,
self.out_channel, 5)
self.decoder = AttDecoder(ratio, **attdecoder)
self.ratio = ratio
def forward(self, inputs, targets=None):
cnn_features, images_mask, labels = inputs
counting_mask = images_mask[:, :, ::self.ratio, ::self.ratio]
counting_preds1, _ = self.counting_decoder1(cnn_features, counting_mask)
counting_preds2, _ = self.counting_decoder2(cnn_features, counting_mask)
counting_preds = (counting_preds1 + counting_preds2) / 2
word_probs = self.decoder(cnn_features, labels, counting_preds,
images_mask)
return word_probs, counting_preds, counting_preds1, counting_preds2
|