File size: 10,332 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
from paddle import ParamAttr
import paddle.nn.functional as F
import numpy as np

from .rec_att_head import AttentionGRUCell


def get_para_bias_attr(l2_decay, k):
    if l2_decay > 0:
        regularizer = paddle.regularizer.L2Decay(l2_decay)
        stdv = 1.0 / math.sqrt(k * 1.0)
        initializer = nn.initializer.Uniform(-stdv, stdv)
    else:
        regularizer = None
        initializer = None
    weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
    bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
    return [weight_attr, bias_attr]


class TableAttentionHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 hidden_size,
                 in_max_len=488,
                 max_text_length=800,
                 out_channels=30,
                 loc_reg_num=4,
                 **kwargs):
        super(TableAttentionHead, self).__init__()
        self.input_size = in_channels[-1]
        self.hidden_size = hidden_size
        self.out_channels = out_channels
        self.max_text_length = max_text_length

        self.structure_attention_cell = AttentionGRUCell(
            self.input_size, hidden_size, self.out_channels, use_gru=False)
        self.structure_generator = nn.Linear(hidden_size, self.out_channels)
        self.in_max_len = in_max_len

        if self.in_max_len == 640:
            self.loc_fea_trans = nn.Linear(400, self.max_text_length + 1)
        elif self.in_max_len == 800:
            self.loc_fea_trans = nn.Linear(625, self.max_text_length + 1)
        else:
            self.loc_fea_trans = nn.Linear(256, self.max_text_length + 1)
        self.loc_generator = nn.Linear(self.input_size + hidden_size,
                                       loc_reg_num)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None):
        # if and else branch are both needed when you want to assign a variable
        # if you modify the var in just one branch, then the modification will not work.
        fea = inputs[-1]
        last_shape = int(np.prod(fea.shape[2:]))  # gry added
        fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
        fea = fea.transpose([0, 2, 1])  # (NTC)(batch, width, channels)
        batch_size = fea.shape[0]

        hidden = paddle.zeros((batch_size, self.hidden_size))
        output_hiddens = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.hidden_size))
        if self.training and targets is not None:
            structure = targets[0]
            for i in range(self.max_text_length + 1):
                elem_onehots = self._char_to_onehot(
                    structure[:, i], onehot_dim=self.out_channels)
                (outputs, hidden), alpha = self.structure_attention_cell(
                    hidden, fea, elem_onehots)
                output_hiddens[:, i, :] = outputs
            structure_probs = self.structure_generator(output_hiddens)
            loc_fea = fea.transpose([0, 2, 1])
            loc_fea = self.loc_fea_trans(loc_fea)
            loc_fea = loc_fea.transpose([0, 2, 1])
            loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
            loc_preds = self.loc_generator(loc_concat)
            loc_preds = F.sigmoid(loc_preds)
        else:
            temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
            structure_probs = None
            loc_preds = None
            elem_onehots = None
            outputs = None
            alpha = None
            max_text_length = paddle.to_tensor(self.max_text_length)
            for i in range(max_text_length + 1):
                elem_onehots = self._char_to_onehot(
                    temp_elem, onehot_dim=self.out_channels)
                (outputs, hidden), alpha = self.structure_attention_cell(
                    hidden, fea, elem_onehots)
                output_hiddens[:, i, :] = outputs
                structure_probs_step = self.structure_generator(outputs)
                temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")

            structure_probs = self.structure_generator(output_hiddens)
            structure_probs = F.softmax(structure_probs)
            loc_fea = fea.transpose([0, 2, 1])
            loc_fea = self.loc_fea_trans(loc_fea)
            loc_fea = loc_fea.transpose([0, 2, 1])
            loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
            loc_preds = self.loc_generator(loc_concat)
            loc_preds = F.sigmoid(loc_preds)
        return {'structure_probs': structure_probs, 'loc_preds': loc_preds}


class SLAHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 hidden_size,
                 out_channels=30,
                 max_text_length=500,
                 loc_reg_num=4,
                 fc_decay=0.0,
                 **kwargs):
        """
        @param in_channels: input shape
        @param hidden_size: hidden_size for RNN and Embedding
        @param out_channels: num_classes to rec
        @param max_text_length: max text pred
        """
        super().__init__()
        in_channels = in_channels[-1]
        self.hidden_size = hidden_size
        self.max_text_length = max_text_length
        self.emb = self._char_to_onehot
        self.num_embeddings = out_channels
        self.loc_reg_num = loc_reg_num

        # structure
        self.structure_attention_cell = AttentionGRUCell(
            in_channels, hidden_size, self.num_embeddings)
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        weight_attr1_1, bias_attr1_1 = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        weight_attr1_2, bias_attr1_2 = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        self.structure_generator = nn.Sequential(
            nn.Linear(
                self.hidden_size,
                self.hidden_size,
                weight_attr=weight_attr1_2,
                bias_attr=bias_attr1_2),
            nn.Linear(
                hidden_size,
                out_channels,
                weight_attr=weight_attr,
                bias_attr=bias_attr))
        # loc
        weight_attr1, bias_attr1 = get_para_bias_attr(
            l2_decay=fc_decay, k=self.hidden_size)
        weight_attr2, bias_attr2 = get_para_bias_attr(
            l2_decay=fc_decay, k=self.hidden_size)
        self.loc_generator = nn.Sequential(
            nn.Linear(
                self.hidden_size,
                self.hidden_size,
                weight_attr=weight_attr1,
                bias_attr=bias_attr1),
            nn.Linear(
                self.hidden_size,
                loc_reg_num,
                weight_attr=weight_attr2,
                bias_attr=bias_attr2),
            nn.Sigmoid())

    def forward(self, inputs, targets=None):
        fea = inputs[-1]
        batch_size = fea.shape[0]
        # reshape
        fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], -1])
        fea = fea.transpose([0, 2, 1])  # (NTC)(batch, width, channels)

        hidden = paddle.zeros((batch_size, self.hidden_size))
        structure_preds = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.num_embeddings))
        loc_preds = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.loc_reg_num))
        structure_preds.stop_gradient = True
        loc_preds.stop_gradient = True
        if self.training and targets is not None:
            structure = targets[0]
            for i in range(self.max_text_length + 1):
                hidden, structure_step, loc_step = self._decode(structure[:, i],
                                                                fea, hidden)
                structure_preds[:, i, :] = structure_step
                loc_preds[:, i, :] = loc_step
        else:
            pre_chars = paddle.zeros(shape=[batch_size], dtype="int32")
            max_text_length = paddle.to_tensor(self.max_text_length)
            # for export
            loc_step, structure_step = None, None
            for i in range(max_text_length + 1):
                hidden, structure_step, loc_step = self._decode(pre_chars, fea,
                                                                hidden)
                pre_chars = structure_step.argmax(axis=1, dtype="int32")
                structure_preds[:, i, :] = structure_step
                loc_preds[:, i, :] = loc_step
        if not self.training:
            structure_preds = F.softmax(structure_preds)
        return {'structure_probs': structure_preds, 'loc_preds': loc_preds}

    def _decode(self, pre_chars, features, hidden):
        """
        Predict table label and coordinates for each step
        @param pre_chars: Table label in previous step
        @param features:
        @param hidden: hidden status in previous step
        @return:
        """
        emb_feature = self.emb(pre_chars)
        # output shape is b * self.hidden_size
        (output, hidden), alpha = self.structure_attention_cell(
            hidden, features, emb_feature)

        # structure
        structure_step = self.structure_generator(output)
        # loc
        loc_step = self.loc_generator(output)
        return hidden, structure_step, loc_step

    def _char_to_onehot(self, input_char):
        input_ont_hot = F.one_hot(input_char, self.num_embeddings)
        return input_ont_hot