File size: 11,178 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/ppdet/modeling/necks/fpn.py
"""

import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import XavierUniform
from paddle.nn.initializer import Normal
from paddle.regularizer import L2Decay

__all__ = ['FCEFPN']


class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 groups=1,
                 norm_type='bn',
                 norm_decay=0.,
                 norm_groups=32,
                 lr_scale=1.,
                 freeze_norm=False,
                 initializer=Normal(
                     mean=0., std=0.01)):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

        bias_attr = False

        self.conv = nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(
                initializer=initializer, learning_rate=1.),
            bias_attr=bias_attr)

        norm_lr = 0. if freeze_norm else 1.
        param_attr = ParamAttr(
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
        bias_attr = ParamAttr(
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay) if norm_decay is not None else None)
        if norm_type == 'bn':
            self.norm = nn.BatchNorm2D(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
        elif norm_type == 'sync_bn':
            self.norm = nn.SyncBatchNorm(
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
        elif norm_type == 'gn':
            self.norm = nn.GroupNorm(
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        return out


class FCEFPN(nn.Layer):
    """
    Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
    Args:
        in_channels (list[int]): input channels of each level which can be 
            derived from the output shape of backbone by from_config
        out_channels (list[int]): output channel of each level
        spatial_scales (list[float]): the spatial scales between input feature
            maps and original input image which can be derived from the output 
            shape of backbone by from_config
        has_extra_convs (bool): whether to add extra conv to the last level.
            default False
        extra_stage (int): the number of extra stages added to the last level.
            default 1
        use_c5 (bool): Whether to use c5 as the input of extra stage, 
            otherwise p5 is used. default True
        norm_type (string|None): The normalization type in FPN module. If 
            norm_type is None, norm will not be used after conv and if 
            norm_type is string, bn, gn, sync_bn are available. default None
        norm_decay (float): weight decay for normalization layer weights.
            default 0.
        freeze_norm (bool): whether to freeze normalization layer.  
            default False
        relu_before_extra_convs (bool): whether to add relu before extra convs.
            default False
        
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
                 has_extra_convs=False,
                 extra_stage=1,
                 use_c5=True,
                 norm_type=None,
                 norm_decay=0.,
                 freeze_norm=False,
                 relu_before_extra_convs=True):
        super(FCEFPN, self).__init__()
        self.out_channels = out_channels
        for s in range(extra_stage):
            spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
        self.spatial_scales = spatial_scales
        self.has_extra_convs = has_extra_convs
        self.extra_stage = extra_stage
        self.use_c5 = use_c5
        self.relu_before_extra_convs = relu_before_extra_convs
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm

        self.lateral_convs = []
        self.fpn_convs = []
        fan = out_channels * 3 * 3

        # stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
        # 0 <= st_stage < ed_stage <= 3
        st_stage = 4 - len(in_channels)
        ed_stage = st_stage + len(in_channels) - 1
        for i in range(st_stage, ed_stage + 1):
            if i == 3:
                lateral_name = 'fpn_inner_res5_sum'
            else:
                lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
            in_c = in_channels[i - st_stage]
            if self.norm_type is not None:
                lateral = self.add_sublayer(
                    lateral_name,
                    ConvNormLayer(
                        ch_in=in_c,
                        ch_out=out_channels,
                        filter_size=1,
                        stride=1,
                        norm_type=self.norm_type,
                        norm_decay=self.norm_decay,
                        freeze_norm=self.freeze_norm,
                        initializer=XavierUniform(fan_out=in_c)))
            else:
                lateral = self.add_sublayer(
                    lateral_name,
                    nn.Conv2D(
                        in_channels=in_c,
                        out_channels=out_channels,
                        kernel_size=1,
                        weight_attr=ParamAttr(
                            initializer=XavierUniform(fan_out=in_c))))
            self.lateral_convs.append(lateral)

        for i in range(st_stage, ed_stage + 1):
            fpn_name = 'fpn_res{}_sum'.format(i + 2)
            if self.norm_type is not None:
                fpn_conv = self.add_sublayer(
                    fpn_name,
                    ConvNormLayer(
                        ch_in=out_channels,
                        ch_out=out_channels,
                        filter_size=3,
                        stride=1,
                        norm_type=self.norm_type,
                        norm_decay=self.norm_decay,
                        freeze_norm=self.freeze_norm,
                        initializer=XavierUniform(fan_out=fan)))
            else:
                fpn_conv = self.add_sublayer(
                    fpn_name,
                    nn.Conv2D(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel_size=3,
                        padding=1,
                        weight_attr=ParamAttr(
                            initializer=XavierUniform(fan_out=fan))))
            self.fpn_convs.append(fpn_conv)

        # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
        if self.has_extra_convs:
            for i in range(self.extra_stage):
                lvl = ed_stage + 1 + i
                if i == 0 and self.use_c5:
                    in_c = in_channels[-1]
                else:
                    in_c = out_channels
                extra_fpn_name = 'fpn_{}'.format(lvl + 2)
                if self.norm_type is not None:
                    extra_fpn_conv = self.add_sublayer(
                        extra_fpn_name,
                        ConvNormLayer(
                            ch_in=in_c,
                            ch_out=out_channels,
                            filter_size=3,
                            stride=2,
                            norm_type=self.norm_type,
                            norm_decay=self.norm_decay,
                            freeze_norm=self.freeze_norm,
                            initializer=XavierUniform(fan_out=fan)))
                else:
                    extra_fpn_conv = self.add_sublayer(
                        extra_fpn_name,
                        nn.Conv2D(
                            in_channels=in_c,
                            out_channels=out_channels,
                            kernel_size=3,
                            stride=2,
                            padding=1,
                            weight_attr=ParamAttr(
                                initializer=XavierUniform(fan_out=fan))))
                self.fpn_convs.append(extra_fpn_conv)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'in_channels': [i.channels for i in input_shape],
            'spatial_scales': [1.0 / i.stride for i in input_shape],
        }

    def forward(self, body_feats):
        laterals = []
        num_levels = len(body_feats)

        for i in range(num_levels):
            laterals.append(self.lateral_convs[i](body_feats[i]))

        for i in range(1, num_levels):
            lvl = num_levels - i
            upsample = F.interpolate(
                laterals[lvl],
                scale_factor=2.,
                mode='nearest', )
            laterals[lvl - 1] += upsample

        fpn_output = []
        for lvl in range(num_levels):
            fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))

        if self.extra_stage > 0:
            # use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
            if not self.has_extra_convs:
                assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
                fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
            # add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
            else:
                if self.use_c5:
                    extra_source = body_feats[-1]
                else:
                    extra_source = fpn_output[-1]
                fpn_output.append(self.fpn_convs[num_levels](extra_source))

                for i in range(1, self.extra_stage):
                    if self.relu_before_extra_convs:
                        fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
                            fpn_output[-1])))
                    else:
                        fpn_output.append(self.fpn_convs[num_levels + i](
                            fpn_output[-1]))
        return fpn_output