File size: 5,439 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Code is refer from:
https://github.com/RuijieJ/pren/blob/main/Nets/Aggregation.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F


class PoolAggregate(nn.Layer):
    def __init__(self, n_r, d_in, d_middle=None, d_out=None):
        super(PoolAggregate, self).__init__()
        if not d_middle:
            d_middle = d_in
        if not d_out:
            d_out = d_in

        self.d_in = d_in
        self.d_middle = d_middle
        self.d_out = d_out
        self.act = nn.Swish()

        self.n_r = n_r
        self.aggs = self._build_aggs()

    def _build_aggs(self):
        aggs = []
        for i in range(self.n_r):
            aggs.append(
                self.add_sublayer(
                    '{}'.format(i),
                    nn.Sequential(
                        ('conv1', nn.Conv2D(
                            self.d_in, self.d_middle, 3, 2, 1, bias_attr=False)
                         ), ('bn1', nn.BatchNorm(self.d_middle)),
                        ('act', self.act), ('conv2', nn.Conv2D(
                            self.d_middle, self.d_out, 3, 2, 1, bias_attr=False
                        )), ('bn2', nn.BatchNorm(self.d_out)))))
        return aggs

    def forward(self, x):
        b = x.shape[0]
        outs = []
        for agg in self.aggs:
            y = agg(x)
            p = F.adaptive_avg_pool2d(y, 1)
            outs.append(p.reshape((b, 1, self.d_out)))
        out = paddle.concat(outs, 1)
        return out


class WeightAggregate(nn.Layer):
    def __init__(self, n_r, d_in, d_middle=None, d_out=None):
        super(WeightAggregate, self).__init__()
        if not d_middle:
            d_middle = d_in
        if not d_out:
            d_out = d_in

        self.n_r = n_r
        self.d_out = d_out
        self.act = nn.Swish()

        self.conv_n = nn.Sequential(
            ('conv1', nn.Conv2D(
                d_in, d_in, 3, 1, 1,
                bias_attr=False)), ('bn1', nn.BatchNorm(d_in)),
            ('act1', self.act), ('conv2', nn.Conv2D(
                d_in, n_r, 1, bias_attr=False)), ('bn2', nn.BatchNorm(n_r)),
            ('act2', nn.Sigmoid()))
        self.conv_d = nn.Sequential(
            ('conv1', nn.Conv2D(
                d_in, d_middle, 3, 1, 1,
                bias_attr=False)), ('bn1', nn.BatchNorm(d_middle)),
            ('act1', self.act), ('conv2', nn.Conv2D(
                d_middle, d_out, 1,
                bias_attr=False)), ('bn2', nn.BatchNorm(d_out)))

    def forward(self, x):
        b, _, h, w = x.shape

        hmaps = self.conv_n(x)
        fmaps = self.conv_d(x)
        r = paddle.bmm(
            hmaps.reshape((b, self.n_r, h * w)),
            fmaps.reshape((b, self.d_out, h * w)).transpose((0, 2, 1)))
        return r


class GCN(nn.Layer):
    def __init__(self, d_in, n_in, d_out=None, n_out=None, dropout=0.1):
        super(GCN, self).__init__()
        if not d_out:
            d_out = d_in
        if not n_out:
            n_out = d_in

        self.conv_n = nn.Conv1D(n_in, n_out, 1)
        self.linear = nn.Linear(d_in, d_out)
        self.dropout = nn.Dropout(dropout)
        self.act = nn.Swish()

    def forward(self, x):
        x = self.conv_n(x)
        x = self.dropout(self.linear(x))
        return self.act(x)


class PRENFPN(nn.Layer):
    def __init__(self, in_channels, n_r, d_model, max_len, dropout):
        super(PRENFPN, self).__init__()
        assert len(in_channels) == 3, "in_channels' length must be 3."
        c1, c2, c3 = in_channels  # the depths are from big to small
        # build fpn
        assert d_model % 3 == 0, "{} can't be divided by 3.".format(d_model)
        self.agg_p1 = PoolAggregate(n_r, c1, d_out=d_model // 3)
        self.agg_p2 = PoolAggregate(n_r, c2, d_out=d_model // 3)
        self.agg_p3 = PoolAggregate(n_r, c3, d_out=d_model // 3)

        self.agg_w1 = WeightAggregate(n_r, c1, 4 * c1, d_model // 3)
        self.agg_w2 = WeightAggregate(n_r, c2, 4 * c2, d_model // 3)
        self.agg_w3 = WeightAggregate(n_r, c3, 4 * c3, d_model // 3)

        self.gcn_pool = GCN(d_model, n_r, d_model, max_len, dropout)
        self.gcn_weight = GCN(d_model, n_r, d_model, max_len, dropout)

        self.out_channels = d_model

    def forward(self, inputs):
        f3, f5, f7 = inputs

        rp1 = self.agg_p1(f3)
        rp2 = self.agg_p2(f5)
        rp3 = self.agg_p3(f7)
        rp = paddle.concat([rp1, rp2, rp3], 2)  # [b,nr,d]

        rw1 = self.agg_w1(f3)
        rw2 = self.agg_w2(f5)
        rw3 = self.agg_w3(f7)
        rw = paddle.concat([rw1, rw2, rw3], 2)  # [b,nr,d]

        y1 = self.gcn_pool(rp)
        y2 = self.gcn_weight(rw)
        y = 0.5 * (y1 + y2)
        return y  # [b,max_len,d]