File size: 12,793 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import functools
from .tps import GridGenerator

'''This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/transformations/gaspin_transformation.py
'''

class SP_TransformerNetwork(nn.Layer):
    """
    Sturture-Preserving Transformation (SPT) as Equa. (2) in Ref. [1]
    Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
    """

    def __init__(self, nc=1, default_type=5):
        """ Based on SPIN
        Args:
            nc (int): number of input channels (usually in 1 or 3)
            default_type (int): the complexity of transformation intensities (by default set to 6 as the paper)
        """
        super(SP_TransformerNetwork, self).__init__()
        self.power_list = self.cal_K(default_type)
        self.sigmoid = nn.Sigmoid()
        self.bn = nn.InstanceNorm2D(nc)

    def cal_K(self, k=5):
        """

        Args:
            k (int): the complexity of transformation intensities (by default set to 6 as the paper)

        Returns:
            List: the normalized intensity of each pixel in [0,1], denoted as \beta [1x(2K+1)]

        """
        from math import log
        x = []
        if k != 0:
            for i in range(1, k+1):
                lower = round(log(1-(0.5/(k+1))*i)/log((0.5/(k+1))*i), 2)
                upper = round(1/lower, 2)
                x.append(lower)
                x.append(upper)
        x.append(1.00)
        return x

    def forward(self, batch_I, weights, offsets, lambda_color=None):
        """

        Args:
            batch_I (Tensor): batch of input images [batch_size x nc x I_height x I_width]
            weights:
            offsets: the predicted offset by AIN, a scalar
            lambda_color: the learnable update gate \alpha in Equa. (5) as
                          g(x) = (1 - \alpha) \odot x + \alpha \odot x_{offsets}

        Returns:
            Tensor: transformed images by SPN as Equa. (4) in Ref. [1]
                        [batch_size x I_channel_num x I_r_height x I_r_width]

        """
        batch_I = (batch_I + 1) * 0.5
        if offsets is not None:
            batch_I = batch_I*(1-lambda_color) + offsets*lambda_color
        batch_weight_params = paddle.unsqueeze(paddle.unsqueeze(weights, -1), -1)
        batch_I_power = paddle.stack([batch_I.pow(p) for p in self.power_list], axis=1)

        batch_weight_sum = paddle.sum(batch_I_power * batch_weight_params, axis=1)
        batch_weight_sum = self.bn(batch_weight_sum)
        batch_weight_sum = self.sigmoid(batch_weight_sum)
        batch_weight_sum = batch_weight_sum * 2 - 1
        return batch_weight_sum

class GA_SPIN_Transformer(nn.Layer):
    """
    Geometric-Absorbed SPIN Transformation (GA-SPIN) proposed in Ref. [1]


    Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
    """

    def __init__(self, in_channels=1,
                 I_r_size=(32, 100),
                 offsets=False,
                 norm_type='BN',
                 default_type=6,
                 loc_lr=1,
                 stn=True):
        """
        Args:
            in_channels (int): channel of input features,
                                set it to 1 if the grayscale images and 3 if RGB input
            I_r_size (tuple): size of rectified images (used in STN transformations)
            offsets (bool): set it to False if use SPN w.o. AIN,
                            and set it to True if use SPIN (both with SPN and AIN)
            norm_type (str): the normalization type of the module,
                            set it to 'BN' by default, 'IN' optionally
            default_type (int): the K chromatic space,
                                set it to 3/5/6 depend on the complexity of transformation intensities
            loc_lr (float): learning rate of location network
            stn (bool): whther to use stn.

        """
        super(GA_SPIN_Transformer, self).__init__()
        self.nc = in_channels
        self.spt = True
        self.offsets = offsets
        self.stn = stn  # set to True in GA-SPIN, while set it to False in SPIN
        self.I_r_size = I_r_size
        self.out_channels = in_channels
        if norm_type == 'BN':
            norm_layer = functools.partial(nn.BatchNorm2D, use_global_stats=True)
        elif norm_type == 'IN':
            norm_layer = functools.partial(nn.InstanceNorm2D, weight_attr=False,
                                           use_global_stats=False)
        else:
            raise NotImplementedError('normalization layer [%s] is not found' % norm_type)

        if self.spt:
            self.sp_net = SP_TransformerNetwork(in_channels,
                                                default_type)
            self.spt_convnet = nn.Sequential(
                                  # 32*100
                                  nn.Conv2D(in_channels, 32, 3, 1, 1, bias_attr=False),
                                  norm_layer(32), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 16*50
                                  nn.Conv2D(32, 64, 3, 1, 1, bias_attr=False),
                                  norm_layer(64), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 8*25
                                  nn.Conv2D(64, 128, 3, 1, 1, bias_attr=False),
                                  norm_layer(128), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 4*12
            )
            self.stucture_fc1 = nn.Sequential(
                                  nn.Conv2D(128, 256, 3, 1, 1, bias_attr=False),
                                  norm_layer(256), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  nn.Conv2D(256, 256, 3, 1, 1, bias_attr=False),
                                  norm_layer(256), nn.ReLU(),  # 2*6
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  nn.Conv2D(256, 512, 3, 1, 1, bias_attr=False),
                                  norm_layer(512), nn.ReLU(),  # 1*3
                                  nn.AdaptiveAvgPool2D(1),
                                  nn.Flatten(1, -1),  # batch_size x 512
                                  nn.Linear(512, 256, weight_attr=nn.initializer.Normal(0.001)),
                                  nn.BatchNorm1D(256), nn.ReLU()
                                )
            self.out_weight = 2*default_type+1
            self.spt_length = 2*default_type+1
            if offsets:
                self.out_weight += 1
            if self.stn:
                self.F = 20
                self.out_weight += self.F * 2
                self.GridGenerator = GridGenerator(self.F*2, self.F)
                
            # self.out_weight*=nc
            # Init structure_fc2 in LocalizationNetwork
            initial_bias = self.init_spin(default_type*2)
            initial_bias = initial_bias.reshape(-1)
            param_attr = ParamAttr(
                learning_rate=loc_lr,
                initializer=nn.initializer.Assign(np.zeros([256, self.out_weight])))
            bias_attr = ParamAttr(
                learning_rate=loc_lr,
                initializer=nn.initializer.Assign(initial_bias))
            self.stucture_fc2 = nn.Linear(256, self.out_weight,
                                weight_attr=param_attr,
                                bias_attr=bias_attr)
            self.sigmoid = nn.Sigmoid()

            if offsets:
                self.offset_fc1 = nn.Sequential(nn.Conv2D(128, 16,
                                                          3, 1, 1,
                                                          bias_attr=False),
                                                norm_layer(16),
                                                nn.ReLU(),)
                self.offset_fc2 = nn.Conv2D(16, in_channels,
                                            3, 1, 1)
                self.pool = nn.MaxPool2D(2, 2)

    def init_spin(self, nz):
        """
        Args:
            nz (int): number of paired \betas exponents, which means the value of K x 2

        """
        init_id = [0.00]*nz+[5.00]
        if self.offsets:
            init_id += [-5.00]
            # init_id *=3
        init = np.array(init_id)

        if self.stn:
            F = self.F
            ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
            ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
            ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
            ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
            ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
            initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
            initial_bias = initial_bias.reshape(-1)
            init = np.concatenate([init, initial_bias], axis=0)
        return init

    def forward(self, x, return_weight=False):
        """
        Args:
            x (Tensor): input image batch
            return_weight (bool): set to False by default,
                                  if set to True return the predicted offsets of AIN, denoted as x_{offsets}

        Returns:
            Tensor: rectified image [batch_size x I_channel_num x I_height x I_width], the same as the input size
        """

        if self.spt:
            feat = self.spt_convnet(x)
            fc1 = self.stucture_fc1(feat)
            sp_weight_fusion = self.stucture_fc2(fc1)
            sp_weight_fusion = sp_weight_fusion.reshape([x.shape[0], self.out_weight, 1])
            if self.offsets:  # SPIN w. AIN
                lambda_color = sp_weight_fusion[:, self.spt_length, 0]
                lambda_color = self.sigmoid(lambda_color).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
                sp_weight = sp_weight_fusion[:, :self.spt_length, :]
                offsets = self.pool(self.offset_fc2(self.offset_fc1(feat)))

                assert offsets.shape[2] == 2  # 2
                assert offsets.shape[3] == 6  # 16
                offsets = self.sigmoid(offsets)  # v12

                if return_weight:
                    return offsets
                offsets = nn.functional.upsample(offsets, size=(x.shape[2], x.shape[3]), mode='bilinear')

                if self.stn:
                    batch_C_prime = sp_weight_fusion[:, (self.spt_length + 1):, :].reshape([x.shape[0], self.F, 2])
                    build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
                    build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
                                                                   self.I_r_size[0],
                                                                   self.I_r_size[1],
                                                                   2])

            else:  # SPIN w.o. AIN
                sp_weight = sp_weight_fusion[:, :self.spt_length, :]
                lambda_color, offsets = None, None

                if self.stn:
                    batch_C_prime = sp_weight_fusion[:, self.spt_length:, :].reshape([x.shape[0], self.F, 2])
                    build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
                    build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
                                                                   self.I_r_size[0],
                                                                   self.I_r_size[1],
                                                                   2])

            x = self.sp_net(x, sp_weight, offsets, lambda_color)
            if self.stn:
                x = F.grid_sample(x=x, grid=build_P_prime_reshape, padding_mode='border')
        return x