File size: 12,793 Bytes
a89d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import functools
from .tps import GridGenerator
'''This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/transformations/gaspin_transformation.py
'''
class SP_TransformerNetwork(nn.Layer):
"""
Sturture-Preserving Transformation (SPT) as Equa. (2) in Ref. [1]
Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
"""
def __init__(self, nc=1, default_type=5):
""" Based on SPIN
Args:
nc (int): number of input channels (usually in 1 or 3)
default_type (int): the complexity of transformation intensities (by default set to 6 as the paper)
"""
super(SP_TransformerNetwork, self).__init__()
self.power_list = self.cal_K(default_type)
self.sigmoid = nn.Sigmoid()
self.bn = nn.InstanceNorm2D(nc)
def cal_K(self, k=5):
"""
Args:
k (int): the complexity of transformation intensities (by default set to 6 as the paper)
Returns:
List: the normalized intensity of each pixel in [0,1], denoted as \beta [1x(2K+1)]
"""
from math import log
x = []
if k != 0:
for i in range(1, k+1):
lower = round(log(1-(0.5/(k+1))*i)/log((0.5/(k+1))*i), 2)
upper = round(1/lower, 2)
x.append(lower)
x.append(upper)
x.append(1.00)
return x
def forward(self, batch_I, weights, offsets, lambda_color=None):
"""
Args:
batch_I (Tensor): batch of input images [batch_size x nc x I_height x I_width]
weights:
offsets: the predicted offset by AIN, a scalar
lambda_color: the learnable update gate \alpha in Equa. (5) as
g(x) = (1 - \alpha) \odot x + \alpha \odot x_{offsets}
Returns:
Tensor: transformed images by SPN as Equa. (4) in Ref. [1]
[batch_size x I_channel_num x I_r_height x I_r_width]
"""
batch_I = (batch_I + 1) * 0.5
if offsets is not None:
batch_I = batch_I*(1-lambda_color) + offsets*lambda_color
batch_weight_params = paddle.unsqueeze(paddle.unsqueeze(weights, -1), -1)
batch_I_power = paddle.stack([batch_I.pow(p) for p in self.power_list], axis=1)
batch_weight_sum = paddle.sum(batch_I_power * batch_weight_params, axis=1)
batch_weight_sum = self.bn(batch_weight_sum)
batch_weight_sum = self.sigmoid(batch_weight_sum)
batch_weight_sum = batch_weight_sum * 2 - 1
return batch_weight_sum
class GA_SPIN_Transformer(nn.Layer):
"""
Geometric-Absorbed SPIN Transformation (GA-SPIN) proposed in Ref. [1]
Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
"""
def __init__(self, in_channels=1,
I_r_size=(32, 100),
offsets=False,
norm_type='BN',
default_type=6,
loc_lr=1,
stn=True):
"""
Args:
in_channels (int): channel of input features,
set it to 1 if the grayscale images and 3 if RGB input
I_r_size (tuple): size of rectified images (used in STN transformations)
offsets (bool): set it to False if use SPN w.o. AIN,
and set it to True if use SPIN (both with SPN and AIN)
norm_type (str): the normalization type of the module,
set it to 'BN' by default, 'IN' optionally
default_type (int): the K chromatic space,
set it to 3/5/6 depend on the complexity of transformation intensities
loc_lr (float): learning rate of location network
stn (bool): whther to use stn.
"""
super(GA_SPIN_Transformer, self).__init__()
self.nc = in_channels
self.spt = True
self.offsets = offsets
self.stn = stn # set to True in GA-SPIN, while set it to False in SPIN
self.I_r_size = I_r_size
self.out_channels = in_channels
if norm_type == 'BN':
norm_layer = functools.partial(nn.BatchNorm2D, use_global_stats=True)
elif norm_type == 'IN':
norm_layer = functools.partial(nn.InstanceNorm2D, weight_attr=False,
use_global_stats=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
if self.spt:
self.sp_net = SP_TransformerNetwork(in_channels,
default_type)
self.spt_convnet = nn.Sequential(
# 32*100
nn.Conv2D(in_channels, 32, 3, 1, 1, bias_attr=False),
norm_layer(32), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 16*50
nn.Conv2D(32, 64, 3, 1, 1, bias_attr=False),
norm_layer(64), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 8*25
nn.Conv2D(64, 128, 3, 1, 1, bias_attr=False),
norm_layer(128), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
# 4*12
)
self.stucture_fc1 = nn.Sequential(
nn.Conv2D(128, 256, 3, 1, 1, bias_attr=False),
norm_layer(256), nn.ReLU(),
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(256, 256, 3, 1, 1, bias_attr=False),
norm_layer(256), nn.ReLU(), # 2*6
nn.MaxPool2D(kernel_size=2, stride=2),
nn.Conv2D(256, 512, 3, 1, 1, bias_attr=False),
norm_layer(512), nn.ReLU(), # 1*3
nn.AdaptiveAvgPool2D(1),
nn.Flatten(1, -1), # batch_size x 512
nn.Linear(512, 256, weight_attr=nn.initializer.Normal(0.001)),
nn.BatchNorm1D(256), nn.ReLU()
)
self.out_weight = 2*default_type+1
self.spt_length = 2*default_type+1
if offsets:
self.out_weight += 1
if self.stn:
self.F = 20
self.out_weight += self.F * 2
self.GridGenerator = GridGenerator(self.F*2, self.F)
# self.out_weight*=nc
# Init structure_fc2 in LocalizationNetwork
initial_bias = self.init_spin(default_type*2)
initial_bias = initial_bias.reshape(-1)
param_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(np.zeros([256, self.out_weight])))
bias_attr = ParamAttr(
learning_rate=loc_lr,
initializer=nn.initializer.Assign(initial_bias))
self.stucture_fc2 = nn.Linear(256, self.out_weight,
weight_attr=param_attr,
bias_attr=bias_attr)
self.sigmoid = nn.Sigmoid()
if offsets:
self.offset_fc1 = nn.Sequential(nn.Conv2D(128, 16,
3, 1, 1,
bias_attr=False),
norm_layer(16),
nn.ReLU(),)
self.offset_fc2 = nn.Conv2D(16, in_channels,
3, 1, 1)
self.pool = nn.MaxPool2D(2, 2)
def init_spin(self, nz):
"""
Args:
nz (int): number of paired \betas exponents, which means the value of K x 2
"""
init_id = [0.00]*nz+[5.00]
if self.offsets:
init_id += [-5.00]
# init_id *=3
init = np.array(init_id)
if self.stn:
F = self.F
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
initial_bias = initial_bias.reshape(-1)
init = np.concatenate([init, initial_bias], axis=0)
return init
def forward(self, x, return_weight=False):
"""
Args:
x (Tensor): input image batch
return_weight (bool): set to False by default,
if set to True return the predicted offsets of AIN, denoted as x_{offsets}
Returns:
Tensor: rectified image [batch_size x I_channel_num x I_height x I_width], the same as the input size
"""
if self.spt:
feat = self.spt_convnet(x)
fc1 = self.stucture_fc1(feat)
sp_weight_fusion = self.stucture_fc2(fc1)
sp_weight_fusion = sp_weight_fusion.reshape([x.shape[0], self.out_weight, 1])
if self.offsets: # SPIN w. AIN
lambda_color = sp_weight_fusion[:, self.spt_length, 0]
lambda_color = self.sigmoid(lambda_color).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
sp_weight = sp_weight_fusion[:, :self.spt_length, :]
offsets = self.pool(self.offset_fc2(self.offset_fc1(feat)))
assert offsets.shape[2] == 2 # 2
assert offsets.shape[3] == 6 # 16
offsets = self.sigmoid(offsets) # v12
if return_weight:
return offsets
offsets = nn.functional.upsample(offsets, size=(x.shape[2], x.shape[3]), mode='bilinear')
if self.stn:
batch_C_prime = sp_weight_fusion[:, (self.spt_length + 1):, :].reshape([x.shape[0], self.F, 2])
build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
self.I_r_size[0],
self.I_r_size[1],
2])
else: # SPIN w.o. AIN
sp_weight = sp_weight_fusion[:, :self.spt_length, :]
lambda_color, offsets = None, None
if self.stn:
batch_C_prime = sp_weight_fusion[:, self.spt_length:, :].reshape([x.shape[0], self.F, 2])
build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
self.I_r_size[0],
self.I_r_size[1],
2])
x = self.sp_net(x, sp_weight, offsets, lambda_color)
if self.stn:
x = F.grid_sample(x=x, grid=build_P_prime_reshape, padding_mode='border')
return x
|