File size: 10,313 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/FudanVI/FudanOCR/blob/main/scene-text-telescope/model/tbsrn.py
"""

import math
import warnings
import numpy as np
import paddle
from paddle import nn
import string

warnings.filterwarnings("ignore")

from .tps_spatial_transformer import TPSSpatialTransformer
from .stn import STN as STNHead
from .tsrn import GruBlock, mish, UpsampleBLock
from ppocr.modeling.heads.sr_rensnet_transformer import Transformer, LayerNorm, \
    PositionwiseFeedForward, MultiHeadedAttention


def positionalencoding2d(d_model, height, width):
    """
    :param d_model: dimension of the model
    :param height: height of the positions
    :param width: width of the positions
    :return: d_model*height*width position matrix
    """
    if d_model % 4 != 0:
        raise ValueError("Cannot use sin/cos positional encoding with "
                         "odd dimension (got dim={:d})".format(d_model))
    pe = paddle.zeros([d_model, height, width])
    # Each dimension use half of d_model
    d_model = int(d_model / 2)
    div_term = paddle.exp(paddle.arange(0., d_model, 2) *
                          -(math.log(10000.0) / d_model))
    pos_w = paddle.arange(0., width, dtype='float32').unsqueeze(1)
    pos_h = paddle.arange(0., height, dtype='float32').unsqueeze(1)

    pe[0:d_model:2, :, :] = paddle.sin(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1])
    pe[1:d_model:2, :, :] = paddle.cos(pos_w * div_term).transpose([1, 0]).unsqueeze(1).tile([1, height, 1])
    pe[d_model::2, :, :] = paddle.sin(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width])
    pe[d_model + 1::2, :, :] = paddle.cos(pos_h * div_term).transpose([1, 0]).unsqueeze(2).tile([1, 1, width])

    return pe


class FeatureEnhancer(nn.Layer):

    def __init__(self):
        super(FeatureEnhancer, self).__init__()

        self.multihead = MultiHeadedAttention(h=4, d_model=128, dropout=0.1)
        self.mul_layernorm1 = LayerNorm(features=128)

        self.pff = PositionwiseFeedForward(128, 128)
        self.mul_layernorm3 = LayerNorm(features=128)

        self.linear = nn.Linear(128, 64)

    def forward(self, conv_feature):
        '''
        text : (batch, seq_len, embedding_size)
        global_info: (batch, embedding_size, 1, 1)
        conv_feature: (batch, channel, H, W)
        '''
        batch = conv_feature.shape[0]
        position2d = positionalencoding2d(64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024])
        position2d = position2d.tile([batch, 1, 1])
        conv_feature = paddle.concat([conv_feature, position2d], 1)  # batch, 128(64+64), 32, 128
        result = conv_feature.transpose([0, 2, 1])
        origin_result = result
        result = self.mul_layernorm1(origin_result + self.multihead(result, result, result, mask=None)[0])
        origin_result = result
        result = self.mul_layernorm3(origin_result + self.pff(result))
        result = self.linear(result)
        return result.transpose([0, 2, 1])


def str_filt(str_, voc_type):
    alpha_dict = {
        'digit': string.digits,
        'lower': string.digits + string.ascii_lowercase,
        'upper': string.digits + string.ascii_letters,
        'all': string.digits + string.ascii_letters + string.punctuation
    }
    if voc_type == 'lower':
        str_ = str_.lower()
    for char in str_:
        if char not in alpha_dict[voc_type]:
            str_ = str_.replace(char, '')
    str_ = str_.lower()
    return str_


class TBSRN(nn.Layer):
    def __init__(self,
                 in_channels=3,
                 scale_factor=2,
                 width=128,
                 height=32,
                 STN=True,
                 srb_nums=5,
                 mask=False,
                 hidden_units=32,
                 infer_mode=False):
        super(TBSRN, self).__init__()
        in_planes = 3
        if mask:
            in_planes = 4
        assert math.log(scale_factor, 2) % 1 == 0
        upsample_block_num = int(math.log(scale_factor, 2))
        self.block1 = nn.Sequential(
            nn.Conv2D(in_planes, 2 * hidden_units, kernel_size=9, padding=4),
            nn.PReLU()
            # nn.ReLU()
        )
        self.srb_nums = srb_nums
        for i in range(srb_nums):
            setattr(self, 'block%d' % (i + 2), RecurrentResidualBlock(2 * hidden_units))

        setattr(self, 'block%d' % (srb_nums + 2),
                nn.Sequential(
                    nn.Conv2D(2 * hidden_units, 2 * hidden_units, kernel_size=3, padding=1),
                    nn.BatchNorm2D(2 * hidden_units)
                ))

        # self.non_local = NonLocalBlock2D(64, 64)
        block_ = [UpsampleBLock(2 * hidden_units, 2) for _ in range(upsample_block_num)]
        block_.append(nn.Conv2D(2 * hidden_units, in_planes, kernel_size=9, padding=4))
        setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_))
        self.tps_inputsize = [height // scale_factor, width // scale_factor]
        tps_outputsize = [height // scale_factor, width // scale_factor]
        num_control_points = 20
        tps_margins = [0.05, 0.05]
        self.stn = STN
        self.out_channels = in_channels
        if self.stn:
            self.tps = TPSSpatialTransformer(
                output_image_size=tuple(tps_outputsize),
                num_control_points=num_control_points,
                margins=tuple(tps_margins))

            self.stn_head = STNHead(
                in_channels=in_planes,
                num_ctrlpoints=num_control_points,
                activation='none')
        self.infer_mode = infer_mode

        self.english_alphabet = '-0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
        self.english_dict = {}
        for index in range(len(self.english_alphabet)):
            self.english_dict[self.english_alphabet[index]] = index
        transformer = Transformer(alphabet='-0123456789abcdefghijklmnopqrstuvwxyz')
        self.transformer = transformer
        for param in self.transformer.parameters():
            param.trainable = False

    def label_encoder(self, label):
        batch = len(label)

        length = [len(i) for i in label]
        length_tensor = paddle.to_tensor(length, dtype='int64')

        max_length = max(length)
        input_tensor = np.zeros((batch, max_length))
        for i in range(batch):
            for j in range(length[i] - 1):
                input_tensor[i][j + 1] = self.english_dict[label[i][j]]

        text_gt = []
        for i in label:
            for j in i:
                text_gt.append(self.english_dict[j])
        text_gt = paddle.to_tensor(text_gt, dtype='int64')

        input_tensor = paddle.to_tensor(input_tensor, dtype='int64')
        return length_tensor, input_tensor, text_gt

    def forward(self, x):
        output = {}
        if self.infer_mode:
            output["lr_img"] = x
            y = x
        else:
            output["lr_img"] = x[0]
            output["hr_img"] = x[1]
            y = x[0]
        if self.stn and self.training:
            _, ctrl_points_x = self.stn_head(y)
            y, _ = self.tps(y, ctrl_points_x)
        block = {'1': self.block1(y)}
        for i in range(self.srb_nums + 1):
            block[str(i + 2)] = getattr(self,
                                        'block%d' % (i + 2))(block[str(i + 1)])

        block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \
            ((block['1'] + block[str(self.srb_nums + 2)]))

        sr_img = paddle.tanh(block[str(self.srb_nums + 3)])
        output["sr_img"] = sr_img

        if self.training:
            hr_img = x[1]

            # add transformer
            label = [str_filt(i, 'lower') + '-' for i in x[2]]
            length_tensor, input_tensor, text_gt = self.label_encoder(label)
            hr_pred, word_attention_map_gt, hr_correct_list = self.transformer(hr_img, length_tensor,
                                                                               input_tensor)
            sr_pred, word_attention_map_pred, sr_correct_list = self.transformer(sr_img, length_tensor,
                                                                                 input_tensor)
            output["hr_img"] = hr_img
            output["hr_pred"] = hr_pred
            output["text_gt"] = text_gt
            output["word_attention_map_gt"] = word_attention_map_gt
            output["sr_pred"] = sr_pred
            output["word_attention_map_pred"] = word_attention_map_pred

        return output


class RecurrentResidualBlock(nn.Layer):
    def __init__(self, channels):
        super(RecurrentResidualBlock, self).__init__()
        self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2D(channels)
        self.gru1 = GruBlock(channels, channels)
        # self.prelu = nn.ReLU()
        self.prelu = mish()
        self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2D(channels)
        self.gru2 = GruBlock(channels, channels)
        self.feature_enhancer = FeatureEnhancer()

        for p in self.parameters():
            if p.dim() > 1:
                paddle.nn.initializer.XavierUniform(p)

    def forward(self, x):
        residual = self.conv1(x)
        residual = self.bn1(residual)
        residual = self.prelu(residual)
        residual = self.conv2(residual)
        residual = self.bn2(residual)

        size = residual.shape
        residual = residual.reshape([size[0], size[1], -1])
        residual = self.feature_enhancer(residual)
        residual = residual.reshape([size[0], size[1], size[2], size[3]])
        return x + residual