File size: 8,980 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from paddle.optimizer.lr import LRScheduler


class CyclicalCosineDecay(LRScheduler):
    def __init__(self,
                 learning_rate,
                 T_max,
                 cycle=1,
                 last_epoch=-1,
                 eta_min=0.0,
                 verbose=False):
        """
        Cyclical cosine learning rate decay
        A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
        Args:
            learning rate(float): learning rate
            T_max(int): maximum epoch num
            cycle(int): period of the cosine decay
            last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
            eta_min(float): minimum learning rate during training
            verbose(bool): whether to print learning rate for each epoch
        """
        super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
                                                  verbose)
        self.cycle = cycle
        self.eta_min = eta_min

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        reletive_epoch = self.last_epoch % self.cycle
        lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
                (1 + math.cos(math.pi * reletive_epoch / self.cycle))
        return lr


class OneCycleDecay(LRScheduler):
    """
    One Cycle learning rate decay
    A learning rate which can be referred in https://arxiv.org/abs/1708.07120
    Code refered in https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    """

    def __init__(self,
                 max_lr,
                 epochs=None,
                 steps_per_epoch=None,
                 pct_start=0.3,
                 anneal_strategy='cos',
                 div_factor=25.,
                 final_div_factor=1e4,
                 three_phase=False,
                 last_epoch=-1,
                 verbose=False):

        # Validate total_steps
        if epochs <= 0 or not isinstance(epochs, int):
            raise ValueError(
                "Expected positive integer epochs, but got {}".format(epochs))
        if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int):
            raise ValueError(
                "Expected positive integer steps_per_epoch, but got {}".format(
                    steps_per_epoch))
        self.total_steps = epochs * steps_per_epoch

        self.max_lr = max_lr
        self.initial_lr = self.max_lr / div_factor
        self.min_lr = self.initial_lr / final_div_factor

        if three_phase:
            self._schedule_phases = [
                {
                    'end_step': float(pct_start * self.total_steps) - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.max_lr,
                },
                {
                    'end_step': float(2 * pct_start * self.total_steps) - 2,
                    'start_lr': self.max_lr,
                    'end_lr': self.initial_lr,
                },
                {
                    'end_step': self.total_steps - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.min_lr,
                },
            ]
        else:
            self._schedule_phases = [
                {
                    'end_step': float(pct_start * self.total_steps) - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.max_lr,
                },
                {
                    'end_step': self.total_steps - 1,
                    'start_lr': self.max_lr,
                    'end_lr': self.min_lr,
                },
            ]

        # Validate pct_start
        if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
            raise ValueError(
                "Expected float between 0 and 1 pct_start, but got {}".format(
                    pct_start))

        # Validate anneal_strategy
        if anneal_strategy not in ['cos', 'linear']:
            raise ValueError(
                "anneal_strategy must by one of 'cos' or 'linear', instead got {}".
                format(anneal_strategy))
        elif anneal_strategy == 'cos':
            self.anneal_func = self._annealing_cos
        elif anneal_strategy == 'linear':
            self.anneal_func = self._annealing_linear

        super(OneCycleDecay, self).__init__(max_lr, last_epoch, verbose)

    def _annealing_cos(self, start, end, pct):
        "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0."
        cos_out = math.cos(math.pi * pct) + 1
        return end + (start - end) / 2.0 * cos_out

    def _annealing_linear(self, start, end, pct):
        "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0."
        return (end - start) * pct + start

    def get_lr(self):
        computed_lr = 0.0
        step_num = self.last_epoch

        if step_num > self.total_steps:
            raise ValueError(
                "Tried to step {} times. The specified number of total steps is {}"
                .format(step_num + 1, self.total_steps))
        start_step = 0
        for i, phase in enumerate(self._schedule_phases):
            end_step = phase['end_step']
            if step_num <= end_step or i == len(self._schedule_phases) - 1:
                pct = (step_num - start_step) / (end_step - start_step)
                computed_lr = self.anneal_func(phase['start_lr'],
                                               phase['end_lr'], pct)
                break
            start_step = phase['end_step']

        return computed_lr


class TwoStepCosineDecay(LRScheduler):
    def __init__(self,
                 learning_rate,
                 T_max1,
                 T_max2,
                 eta_min=0,
                 last_epoch=-1,
                 verbose=False):
        if not isinstance(T_max1, int):
            raise TypeError(
                "The type of 'T_max1' in 'CosineAnnealingDecay' must be 'int', but received %s."
                % type(T_max1))
        if not isinstance(T_max2, int):
            raise TypeError(
                "The type of 'T_max2' in 'CosineAnnealingDecay' must be 'int', but received %s."
                % type(T_max2))
        if not isinstance(eta_min, (float, int)):
            raise TypeError(
                "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s."
                % type(eta_min))
        assert T_max1 > 0 and isinstance(
            T_max1, int), " 'T_max1' must be a positive integer."
        assert T_max2 > 0 and isinstance(
            T_max2, int), " 'T_max1' must be a positive integer."
        self.T_max1 = T_max1
        self.T_max2 = T_max2
        self.eta_min = float(eta_min)
        super(TwoStepCosineDecay, self).__init__(learning_rate, last_epoch,
                                                 verbose)

    def get_lr(self):

        if self.last_epoch <= self.T_max1:
            if self.last_epoch == 0:
                return self.base_lr
            elif (self.last_epoch - 1 - self.T_max1) % (2 * self.T_max1) == 0:
                return self.last_lr + (self.base_lr - self.eta_min) * (
                    1 - math.cos(math.pi / self.T_max1)) / 2

            return (1 + math.cos(math.pi * self.last_epoch / self.T_max1)) / (
                1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max1)) * (
                    self.last_lr - self.eta_min) + self.eta_min
        else:
            if (self.last_epoch - 1 - self.T_max2) % (2 * self.T_max2) == 0:
                return self.last_lr + (self.base_lr - self.eta_min) * (
                    1 - math.cos(math.pi / self.T_max2)) / 2

            return (1 + math.cos(math.pi * self.last_epoch / self.T_max2)) / (
                1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max2)) * (
                    self.last_lr - self.eta_min) + self.eta_min

    def _get_closed_form_lr(self):
        if self.last_epoch <= self.T_max1:
            return self.eta_min + (self.base_lr - self.eta_min) * (1 + math.cos(
                math.pi * self.last_epoch / self.T_max1)) / 2
        else:
            return self.eta_min + (self.base_lr - self.eta_min) * (1 + math.cos(
                math.pi * self.last_epoch / self.T_max2)) / 2