File size: 5,363 Bytes
a89d9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refered from:
https://github.com/shengtao96/CentripetalText/blob/main/test.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import os.path as osp
import numpy as np
import cv2
import paddle
import pyclipper


class CTPostProcess(object):
    """
    The post process for Centripetal Text (CT).
    """

    def __init__(self, min_score=0.88, min_area=16, box_type='poly', **kwargs):
        self.min_score = min_score
        self.min_area = min_area
        self.box_type = box_type

        self.coord = np.zeros((2, 300, 300), dtype=np.int32)
        for i in range(300):
            for j in range(300):
                self.coord[0, i, j] = j
                self.coord[1, i, j] = i

    def __call__(self, preds, batch):
        outs = preds['maps']
        out_scores = preds['score']

        if isinstance(outs, paddle.Tensor):
            outs = outs.numpy()
        if isinstance(out_scores, paddle.Tensor):
            out_scores = out_scores.numpy()

        batch_size = outs.shape[0]
        boxes_batch = []
        for idx in range(batch_size):
            bboxes = []
            scores = []

            img_shape = batch[idx]

            org_img_size = img_shape[:3]
            img_shape = img_shape[3:]
            img_size = img_shape[:2]

            out = np.expand_dims(outs[idx], axis=0)
            outputs = dict()

            score = np.expand_dims(out_scores[idx], axis=0)

            kernel = out[:, 0, :, :] > 0.2
            loc = out[:, 1:, :, :].astype("float32")

            score = score[0].astype(np.float32)
            kernel = kernel[0].astype(np.uint8)
            loc = loc[0].astype(np.float32)

            label_num, label_kernel = cv2.connectedComponents(
                kernel, connectivity=4)

            for i in range(1, label_num):
                ind = (label_kernel == i)
                if ind.sum(
                ) < 10:  # pixel number less than 10, treated as background
                    label_kernel[ind] = 0

            label = np.zeros_like(label_kernel)
            h, w = label_kernel.shape
            pixels = self.coord[:, :h, :w].reshape(2, -1)
            points = pixels.transpose([1, 0]).astype(np.float32)

            off_points = (points + 10. / 4. * loc[:, pixels[1], pixels[0]].T
                          ).astype(np.int32)
            off_points[:, 0] = np.clip(off_points[:, 0], 0, label.shape[1] - 1)
            off_points[:, 1] = np.clip(off_points[:, 1], 0, label.shape[0] - 1)

            label[pixels[1], pixels[0]] = label_kernel[off_points[:, 1],
                                                       off_points[:, 0]]
            label[label_kernel > 0] = label_kernel[label_kernel > 0]

            score_pocket = [0.0]
            for i in range(1, label_num):
                ind = (label_kernel == i)
                if ind.sum() == 0:
                    score_pocket.append(0.0)
                    continue
                score_i = np.mean(score[ind])
                score_pocket.append(score_i)

            label_num = np.max(label) + 1
            label = cv2.resize(
                label, (img_size[1], img_size[0]),
                interpolation=cv2.INTER_NEAREST)

            scale = (float(org_img_size[1]) / float(img_size[1]),
                     float(org_img_size[0]) / float(img_size[0]))

            for i in range(1, label_num):
                ind = (label == i)
                points = np.array(np.where(ind)).transpose((1, 0))

                if points.shape[0] < self.min_area:
                    continue

                score_i = score_pocket[i]
                if score_i < self.min_score:
                    continue

                if self.box_type == 'rect':
                    rect = cv2.minAreaRect(points[:, ::-1])
                    bbox = cv2.boxPoints(rect) * scale
                    z = bbox.mean(0)
                    bbox = z + (bbox - z) * 0.85
                elif self.box_type == 'poly':
                    binary = np.zeros(label.shape, dtype='uint8')
                    binary[ind] = 1
                    try:
                        _, contours, _ = cv2.findContours(
                            binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                    except BaseException:
                        contours, _ = cv2.findContours(
                            binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

                    bbox = contours[0] * scale

                bbox = bbox.astype('int32')
                bboxes.append(bbox.reshape(-1, 2))
                scores.append(score_i)

            boxes_batch.append({'points': bboxes})

        return boxes_batch