|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import math |
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
|
|
|
|
def get_bias_attr(k): |
|
stdv = 1.0 / math.sqrt(k * 1.0) |
|
initializer = paddle.nn.initializer.Uniform(-stdv, stdv) |
|
bias_attr = ParamAttr(initializer=initializer) |
|
return bias_attr |
|
|
|
|
|
class Head(nn.Layer): |
|
def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs): |
|
super(Head, self).__init__() |
|
|
|
self.conv1 = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels // 4, |
|
kernel_size=kernel_list[0], |
|
padding=int(kernel_list[0] // 2), |
|
weight_attr=ParamAttr(), |
|
bias_attr=False) |
|
self.conv_bn1 = nn.BatchNorm( |
|
num_channels=in_channels // 4, |
|
param_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.Constant(value=1.0)), |
|
bias_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.Constant(value=1e-4)), |
|
act='relu') |
|
self.conv2 = nn.Conv2DTranspose( |
|
in_channels=in_channels // 4, |
|
out_channels=in_channels // 4, |
|
kernel_size=kernel_list[1], |
|
stride=2, |
|
weight_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.KaimingUniform()), |
|
bias_attr=get_bias_attr(in_channels // 4)) |
|
self.conv_bn2 = nn.BatchNorm( |
|
num_channels=in_channels // 4, |
|
param_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.Constant(value=1.0)), |
|
bias_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.Constant(value=1e-4)), |
|
act="relu") |
|
self.conv3 = nn.Conv2DTranspose( |
|
in_channels=in_channels // 4, |
|
out_channels=1, |
|
kernel_size=kernel_list[2], |
|
stride=2, |
|
weight_attr=ParamAttr( |
|
initializer=paddle.nn.initializer.KaimingUniform()), |
|
bias_attr=get_bias_attr(in_channels // 4), ) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv_bn1(x) |
|
x = self.conv2(x) |
|
x = self.conv_bn2(x) |
|
x = self.conv3(x) |
|
x = F.sigmoid(x) |
|
return x |
|
|
|
|
|
class DBHead(nn.Layer): |
|
""" |
|
Differentiable Binarization (DB) for text detection: |
|
see https://arxiv.org/abs/1911.08947 |
|
args: |
|
params(dict): super parameters for build DB network |
|
""" |
|
|
|
def __init__(self, in_channels, k=50, **kwargs): |
|
super(DBHead, self).__init__() |
|
self.k = k |
|
self.binarize = Head(in_channels, **kwargs) |
|
self.thresh = Head(in_channels, **kwargs) |
|
|
|
def step_function(self, x, y): |
|
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y))) |
|
|
|
def forward(self, x, targets=None): |
|
shrink_maps = self.binarize(x) |
|
if not self.training: |
|
return {'maps': shrink_maps} |
|
|
|
threshold_maps = self.thresh(x) |
|
binary_maps = self.step_function(shrink_maps, threshold_maps) |
|
y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1) |
|
return {'maps': y} |
|
|