|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddle import nn |
|
import paddle.nn.functional as F |
|
from paddle import ParamAttr |
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(__dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..'))) |
|
|
|
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule |
|
|
|
|
|
class DSConv(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding, |
|
stride=1, |
|
groups=None, |
|
if_act=True, |
|
act="relu", |
|
**kwargs): |
|
super(DSConv, self).__init__() |
|
if groups == None: |
|
groups = in_channels |
|
self.if_act = if_act |
|
self.act = act |
|
self.conv1 = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
bias_attr=False) |
|
|
|
self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None) |
|
|
|
self.conv2 = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=int(in_channels * 4), |
|
kernel_size=1, |
|
stride=1, |
|
bias_attr=False) |
|
|
|
self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None) |
|
|
|
self.conv3 = nn.Conv2D( |
|
in_channels=int(in_channels * 4), |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias_attr=False) |
|
self._c = [in_channels, out_channels] |
|
if in_channels != out_channels: |
|
self.conv_end = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias_attr=False) |
|
|
|
def forward(self, inputs): |
|
|
|
x = self.conv1(inputs) |
|
x = self.bn1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
if self.if_act: |
|
if self.act == "relu": |
|
x = F.relu(x) |
|
elif self.act == "hardswish": |
|
x = F.hardswish(x) |
|
else: |
|
print("The activation function({}) is selected incorrectly.". |
|
format(self.act)) |
|
exit() |
|
|
|
x = self.conv3(x) |
|
if self._c[0] != self._c[1]: |
|
x = x + self.conv_end(inputs) |
|
return x |
|
|
|
|
|
class DBFPN(nn.Layer): |
|
def __init__(self, in_channels, out_channels, use_asf=False, **kwargs): |
|
super(DBFPN, self).__init__() |
|
self.out_channels = out_channels |
|
self.use_asf = use_asf |
|
weight_attr = paddle.nn.initializer.KaimingUniform() |
|
|
|
self.in2_conv = nn.Conv2D( |
|
in_channels=in_channels[0], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in3_conv = nn.Conv2D( |
|
in_channels=in_channels[1], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in4_conv = nn.Conv2D( |
|
in_channels=in_channels[2], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.in5_conv = nn.Conv2D( |
|
in_channels=in_channels[3], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p5_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p4_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p3_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.p2_conv = nn.Conv2D( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
|
|
if self.use_asf is True: |
|
self.asf = ASFBlock(self.out_channels, self.out_channels // 4) |
|
|
|
def forward(self, x): |
|
c2, c3, c4, c5 = x |
|
|
|
in5 = self.in5_conv(c5) |
|
in4 = self.in4_conv(c4) |
|
in3 = self.in3_conv(c3) |
|
in2 = self.in2_conv(c2) |
|
|
|
out4 = in4 + F.upsample( |
|
in5, scale_factor=2, mode="nearest", align_mode=1) |
|
out3 = in3 + F.upsample( |
|
out4, scale_factor=2, mode="nearest", align_mode=1) |
|
out2 = in2 + F.upsample( |
|
out3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
p5 = self.p5_conv(in5) |
|
p4 = self.p4_conv(out4) |
|
p3 = self.p3_conv(out3) |
|
p2 = self.p2_conv(out2) |
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) |
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) |
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1) |
|
|
|
if self.use_asf is True: |
|
fuse = self.asf(fuse, [p5, p4, p3, p2]) |
|
|
|
return fuse |
|
|
|
|
|
class RSELayer(nn.Layer): |
|
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True): |
|
super(RSELayer, self).__init__() |
|
weight_attr = paddle.nn.initializer.KaimingUniform() |
|
self.out_channels = out_channels |
|
self.in_conv = nn.Conv2D( |
|
in_channels=in_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=kernel_size, |
|
padding=int(kernel_size // 2), |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False) |
|
self.se_block = SEModule(self.out_channels) |
|
self.shortcut = shortcut |
|
|
|
def forward(self, ins): |
|
x = self.in_conv(ins) |
|
if self.shortcut: |
|
out = x + self.se_block(x) |
|
else: |
|
out = self.se_block(x) |
|
return out |
|
|
|
|
|
class RSEFPN(nn.Layer): |
|
def __init__(self, in_channels, out_channels, shortcut=True, **kwargs): |
|
super(RSEFPN, self).__init__() |
|
self.out_channels = out_channels |
|
self.ins_conv = nn.LayerList() |
|
self.inp_conv = nn.LayerList() |
|
|
|
for i in range(len(in_channels)): |
|
self.ins_conv.append( |
|
RSELayer( |
|
in_channels[i], |
|
out_channels, |
|
kernel_size=1, |
|
shortcut=shortcut)) |
|
self.inp_conv.append( |
|
RSELayer( |
|
out_channels, |
|
out_channels // 4, |
|
kernel_size=3, |
|
shortcut=shortcut)) |
|
|
|
def forward(self, x): |
|
c2, c3, c4, c5 = x |
|
|
|
in5 = self.ins_conv[3](c5) |
|
in4 = self.ins_conv[2](c4) |
|
in3 = self.ins_conv[1](c3) |
|
in2 = self.ins_conv[0](c2) |
|
|
|
out4 = in4 + F.upsample( |
|
in5, scale_factor=2, mode="nearest", align_mode=1) |
|
out3 = in3 + F.upsample( |
|
out4, scale_factor=2, mode="nearest", align_mode=1) |
|
out2 = in2 + F.upsample( |
|
out3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
p5 = self.inp_conv[3](in5) |
|
p4 = self.inp_conv[2](out4) |
|
p3 = self.inp_conv[1](out3) |
|
p2 = self.inp_conv[0](out2) |
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) |
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) |
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1) |
|
return fuse |
|
|
|
|
|
class LKPAN(nn.Layer): |
|
def __init__(self, in_channels, out_channels, mode='large', **kwargs): |
|
super(LKPAN, self).__init__() |
|
self.out_channels = out_channels |
|
weight_attr = paddle.nn.initializer.KaimingUniform() |
|
|
|
self.ins_conv = nn.LayerList() |
|
self.inp_conv = nn.LayerList() |
|
|
|
self.pan_head_conv = nn.LayerList() |
|
self.pan_lat_conv = nn.LayerList() |
|
|
|
if mode.lower() == 'lite': |
|
p_layer = DSConv |
|
elif mode.lower() == 'large': |
|
p_layer = nn.Conv2D |
|
else: |
|
raise ValueError( |
|
"mode can only be one of ['lite', 'large'], but received {}". |
|
format(mode)) |
|
|
|
for i in range(len(in_channels)): |
|
self.ins_conv.append( |
|
nn.Conv2D( |
|
in_channels=in_channels[i], |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False)) |
|
|
|
self.inp_conv.append( |
|
p_layer( |
|
in_channels=self.out_channels, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=9, |
|
padding=4, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False)) |
|
|
|
if i > 0: |
|
self.pan_head_conv.append( |
|
nn.Conv2D( |
|
in_channels=self.out_channels // 4, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=3, |
|
padding=1, |
|
stride=2, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False)) |
|
self.pan_lat_conv.append( |
|
p_layer( |
|
in_channels=self.out_channels // 4, |
|
out_channels=self.out_channels // 4, |
|
kernel_size=9, |
|
padding=4, |
|
weight_attr=ParamAttr(initializer=weight_attr), |
|
bias_attr=False)) |
|
|
|
def forward(self, x): |
|
c2, c3, c4, c5 = x |
|
|
|
in5 = self.ins_conv[3](c5) |
|
in4 = self.ins_conv[2](c4) |
|
in3 = self.ins_conv[1](c3) |
|
in2 = self.ins_conv[0](c2) |
|
|
|
out4 = in4 + F.upsample( |
|
in5, scale_factor=2, mode="nearest", align_mode=1) |
|
out3 = in3 + F.upsample( |
|
out4, scale_factor=2, mode="nearest", align_mode=1) |
|
out2 = in2 + F.upsample( |
|
out3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
f5 = self.inp_conv[3](in5) |
|
f4 = self.inp_conv[2](out4) |
|
f3 = self.inp_conv[1](out3) |
|
f2 = self.inp_conv[0](out2) |
|
|
|
pan3 = f3 + self.pan_head_conv[0](f2) |
|
pan4 = f4 + self.pan_head_conv[1](pan3) |
|
pan5 = f5 + self.pan_head_conv[2](pan4) |
|
|
|
p2 = self.pan_lat_conv[0](f2) |
|
p3 = self.pan_lat_conv[1](pan3) |
|
p4 = self.pan_lat_conv[2](pan4) |
|
p5 = self.pan_lat_conv[3](pan5) |
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1) |
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1) |
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1) |
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1) |
|
return fuse |
|
|
|
|
|
class ASFBlock(nn.Layer): |
|
""" |
|
This code is refered from: |
|
https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py |
|
""" |
|
|
|
def __init__(self, in_channels, inter_channels, out_features_num=4): |
|
""" |
|
Adaptive Scale Fusion (ASF) block of DBNet++ |
|
Args: |
|
in_channels: the number of channels in the input data |
|
inter_channels: the number of middle channels |
|
out_features_num: the number of fused stages |
|
""" |
|
super(ASFBlock, self).__init__() |
|
weight_attr = paddle.nn.initializer.KaimingUniform() |
|
self.in_channels = in_channels |
|
self.inter_channels = inter_channels |
|
self.out_features_num = out_features_num |
|
self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1) |
|
|
|
self.spatial_scale = nn.Sequential( |
|
|
|
nn.Conv2D( |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=3, |
|
bias_attr=False, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=weight_attr)), |
|
nn.ReLU(), |
|
nn.Conv2D( |
|
in_channels=1, |
|
out_channels=1, |
|
kernel_size=1, |
|
bias_attr=False, |
|
weight_attr=ParamAttr(initializer=weight_attr)), |
|
nn.Sigmoid()) |
|
|
|
self.channel_scale = nn.Sequential( |
|
nn.Conv2D( |
|
in_channels=inter_channels, |
|
out_channels=out_features_num, |
|
kernel_size=1, |
|
bias_attr=False, |
|
weight_attr=ParamAttr(initializer=weight_attr)), |
|
nn.Sigmoid()) |
|
|
|
def forward(self, fuse_features, features_list): |
|
fuse_features = self.conv(fuse_features) |
|
spatial_x = paddle.mean(fuse_features, axis=1, keepdim=True) |
|
attention_scores = self.spatial_scale(spatial_x) + fuse_features |
|
attention_scores = self.channel_scale(attention_scores) |
|
assert len(features_list) == self.out_features_num |
|
|
|
out_list = [] |
|
for i in range(self.out_features_num): |
|
out_list.append(attention_scores[:, i:i + 1] * features_list[i]) |
|
return paddle.concat(out_list, axis=1) |
|
|