Danieldu
add code
a89d9fd
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/postprocess/drrg_postprocessor.py
"""
import functools
import operator
import numpy as np
import paddle
from numpy.linalg import norm
import cv2
class Node:
def __init__(self, ind):
self.__ind = ind
self.__links = set()
@property
def ind(self):
return self.__ind
@property
def links(self):
return set(self.__links)
def add_link(self, link_node):
self.__links.add(link_node)
link_node.__links.add(self)
def graph_propagation(edges, scores, text_comps, edge_len_thr=50.):
assert edges.ndim == 2
assert edges.shape[1] == 2
assert edges.shape[0] == scores.shape[0]
assert text_comps.ndim == 2
assert isinstance(edge_len_thr, float)
edges = np.sort(edges, axis=1)
score_dict = {}
for i, edge in enumerate(edges):
if text_comps is not None:
box1 = text_comps[edge[0], :8].reshape(4, 2)
box2 = text_comps[edge[1], :8].reshape(4, 2)
center1 = np.mean(box1, axis=0)
center2 = np.mean(box2, axis=0)
distance = norm(center1 - center2)
if distance > edge_len_thr:
scores[i] = 0
if (edge[0], edge[1]) in score_dict:
score_dict[edge[0], edge[1]] = 0.5 * (
score_dict[edge[0], edge[1]] + scores[i])
else:
score_dict[edge[0], edge[1]] = scores[i]
nodes = np.sort(np.unique(edges.flatten()))
mapping = -1 * np.ones((np.max(nodes) + 1), dtype=np.int)
mapping[nodes] = np.arange(nodes.shape[0])
order_inds = mapping[edges]
vertices = [Node(node) for node in nodes]
for ind in order_inds:
vertices[ind[0]].add_link(vertices[ind[1]])
return vertices, score_dict
def connected_components(nodes, score_dict, link_thr):
assert isinstance(nodes, list)
assert all([isinstance(node, Node) for node in nodes])
assert isinstance(score_dict, dict)
assert isinstance(link_thr, float)
clusters = []
nodes = set(nodes)
while nodes:
node = nodes.pop()
cluster = {node}
node_queue = [node]
while node_queue:
node = node_queue.pop(0)
neighbors = set([
neighbor for neighbor in node.links
if score_dict[tuple(sorted([node.ind, neighbor.ind]))] >=
link_thr
])
neighbors.difference_update(cluster)
nodes.difference_update(neighbors)
cluster.update(neighbors)
node_queue.extend(neighbors)
clusters.append(list(cluster))
return clusters
def clusters2labels(clusters, num_nodes):
assert isinstance(clusters, list)
assert all([isinstance(cluster, list) for cluster in clusters])
assert all(
[isinstance(node, Node) for cluster in clusters for node in cluster])
assert isinstance(num_nodes, int)
node_labels = np.zeros(num_nodes)
for cluster_ind, cluster in enumerate(clusters):
for node in cluster:
node_labels[node.ind] = cluster_ind
return node_labels
def remove_single(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert text_comps.shape[0] == comp_pred_labels.shape[0]
single_flags = np.zeros_like(comp_pred_labels)
pred_labels = np.unique(comp_pred_labels)
for label in pred_labels:
current_label_flag = (comp_pred_labels == label)
if np.sum(current_label_flag) == 1:
single_flags[np.where(current_label_flag)[0][0]] = 1
keep_ind = [i for i in range(len(comp_pred_labels)) if not single_flags[i]]
filtered_text_comps = text_comps[keep_ind, :]
filtered_labels = comp_pred_labels[keep_ind]
return filtered_text_comps, filtered_labels
def norm2(point1, point2):
return ((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)**0.5
def min_connect_path(points):
assert isinstance(points, list)
assert all([isinstance(point, list) for point in points])
assert all([isinstance(coord, int) for point in points for coord in point])
points_queue = points.copy()
shortest_path = []
current_edge = [[], []]
edge_dict0 = {}
edge_dict1 = {}
current_edge[0] = points_queue[0]
current_edge[1] = points_queue[0]
points_queue.remove(points_queue[0])
while points_queue:
for point in points_queue:
length0 = norm2(point, current_edge[0])
edge_dict0[length0] = [point, current_edge[0]]
length1 = norm2(current_edge[1], point)
edge_dict1[length1] = [current_edge[1], point]
key0 = min(edge_dict0.keys())
key1 = min(edge_dict1.keys())
if key0 <= key1:
start = edge_dict0[key0][0]
end = edge_dict0[key0][1]
shortest_path.insert(0, [points.index(start), points.index(end)])
points_queue.remove(start)
current_edge[0] = start
else:
start = edge_dict1[key1][0]
end = edge_dict1[key1][1]
shortest_path.append([points.index(start), points.index(end)])
points_queue.remove(end)
current_edge[1] = end
edge_dict0 = {}
edge_dict1 = {}
shortest_path = functools.reduce(operator.concat, shortest_path)
shortest_path = sorted(set(shortest_path), key=shortest_path.index)
return shortest_path
def in_contour(cont, point):
x, y = point
is_inner = cv2.pointPolygonTest(cont, (int(x), int(y)), False) > 0.5
return is_inner
def fix_corner(top_line, bot_line, start_box, end_box):
assert isinstance(top_line, list)
assert all(isinstance(point, list) for point in top_line)
assert isinstance(bot_line, list)
assert all(isinstance(point, list) for point in bot_line)
assert start_box.shape == end_box.shape == (4, 2)
contour = np.array(top_line + bot_line[::-1])
start_left_mid = (start_box[0] + start_box[3]) / 2
start_right_mid = (start_box[1] + start_box[2]) / 2
end_left_mid = (end_box[0] + end_box[3]) / 2
end_right_mid = (end_box[1] + end_box[2]) / 2
if not in_contour(contour, start_left_mid):
top_line.insert(0, start_box[0].tolist())
bot_line.insert(0, start_box[3].tolist())
elif not in_contour(contour, start_right_mid):
top_line.insert(0, start_box[1].tolist())
bot_line.insert(0, start_box[2].tolist())
if not in_contour(contour, end_left_mid):
top_line.append(end_box[0].tolist())
bot_line.append(end_box[3].tolist())
elif not in_contour(contour, end_right_mid):
top_line.append(end_box[1].tolist())
bot_line.append(end_box[2].tolist())
return top_line, bot_line
def comps2boundaries(text_comps, comp_pred_labels):
assert text_comps.ndim == 2
assert len(text_comps) == len(comp_pred_labels)
boundaries = []
if len(text_comps) < 1:
return boundaries
for cluster_ind in range(0, int(np.max(comp_pred_labels)) + 1):
cluster_comp_inds = np.where(comp_pred_labels == cluster_ind)
text_comp_boxes = text_comps[cluster_comp_inds, :8].reshape(
(-1, 4, 2)).astype(np.int32)
score = np.mean(text_comps[cluster_comp_inds, -1])
if text_comp_boxes.shape[0] < 1:
continue
elif text_comp_boxes.shape[0] > 1:
centers = np.mean(text_comp_boxes, axis=1).astype(np.int32).tolist()
shortest_path = min_connect_path(centers)
text_comp_boxes = text_comp_boxes[shortest_path]
top_line = np.mean(
text_comp_boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
bot_line = np.mean(
text_comp_boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
top_line, bot_line = fix_corner(
top_line, bot_line, text_comp_boxes[0], text_comp_boxes[-1])
boundary_points = top_line + bot_line[::-1]
else:
top_line = text_comp_boxes[0, 0:2, :].astype(np.int32).tolist()
bot_line = text_comp_boxes[0, 2:4:-1, :].astype(np.int32).tolist()
boundary_points = top_line + bot_line
boundary = [p for coord in boundary_points for p in coord] + [score]
boundaries.append(boundary)
return boundaries
class DRRGPostprocess(object):
"""Merge text components and construct boundaries of text instances.
Args:
link_thr (float): The edge score threshold.
"""
def __init__(self, link_thr, **kwargs):
assert isinstance(link_thr, float)
self.link_thr = link_thr
def __call__(self, preds, shape_list):
"""
Args:
edges (ndarray): The edge array of shape N * 2, each row is a node
index pair that makes up an edge in graph.
scores (ndarray): The edge score array of shape (N,).
text_comps (ndarray): The text components.
Returns:
List[list[float]]: The predicted boundaries of text instances.
"""
edges, scores, text_comps = preds
if edges is not None:
if isinstance(edges, paddle.Tensor):
edges = edges.numpy()
if isinstance(scores, paddle.Tensor):
scores = scores.numpy()
if isinstance(text_comps, paddle.Tensor):
text_comps = text_comps.numpy()
assert len(edges) == len(scores)
assert text_comps.ndim == 2
assert text_comps.shape[1] == 9
vertices, score_dict = graph_propagation(edges, scores, text_comps)
clusters = connected_components(vertices, score_dict, self.link_thr)
pred_labels = clusters2labels(clusters, text_comps.shape[0])
text_comps, pred_labels = remove_single(text_comps, pred_labels)
boundaries = comps2boundaries(text_comps, pred_labels)
else:
boundaries = []
boundaries, scores = self.resize_boundary(
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])
boxes_batch = [dict(points=boundaries, scores=scores)]
return boxes_batch
def resize_boundary(self, boundaries, scale_factor):
"""Rescale boundaries via scale_factor.
Args:
boundaries (list[list[float]]): The boundary list. Each boundary
with size 2k+1 with k>=4.
scale_factor(ndarray): The scale factor of size (4,).
Returns:
boundaries (list[list[float]]): The scaled boundaries.
"""
boxes = []
scores = []
for b in boundaries:
sz = len(b)
scores.append(b[-1])
b = (np.array(b[:sz - 1]) *
(np.tile(scale_factor[:2], int(
(sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
boxes.append(np.array(b).reshape([-1, 2]))
return boxes, scores