|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This code is refer from: |
|
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
import paddle |
|
from paddle.nn import functional as F |
|
|
|
from ppocr.postprocess.pse_postprocess.pse import pse |
|
|
|
|
|
class PSEPostProcess(object): |
|
""" |
|
The post process for PSE. |
|
""" |
|
|
|
def __init__(self, |
|
thresh=0.5, |
|
box_thresh=0.85, |
|
min_area=16, |
|
box_type='quad', |
|
scale=4, |
|
**kwargs): |
|
assert box_type in ['quad', 'poly'], 'Only quad and poly is supported' |
|
self.thresh = thresh |
|
self.box_thresh = box_thresh |
|
self.min_area = min_area |
|
self.box_type = box_type |
|
self.scale = scale |
|
|
|
def __call__(self, outs_dict, shape_list): |
|
pred = outs_dict['maps'] |
|
if not isinstance(pred, paddle.Tensor): |
|
pred = paddle.to_tensor(pred) |
|
pred = F.interpolate( |
|
pred, scale_factor=4 // self.scale, mode='bilinear') |
|
|
|
score = F.sigmoid(pred[:, 0, :, :]) |
|
|
|
kernels = (pred > self.thresh).astype('float32') |
|
text_mask = kernels[:, 0, :, :] |
|
text_mask = paddle.unsqueeze(text_mask, axis=1) |
|
|
|
kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask |
|
|
|
score = score.numpy() |
|
kernels = kernels.numpy().astype(np.uint8) |
|
|
|
boxes_batch = [] |
|
for batch_index in range(pred.shape[0]): |
|
boxes, scores = self.boxes_from_bitmap(score[batch_index], |
|
kernels[batch_index], |
|
shape_list[batch_index]) |
|
|
|
boxes_batch.append({'points': boxes, 'scores': scores}) |
|
return boxes_batch |
|
|
|
def boxes_from_bitmap(self, score, kernels, shape): |
|
label = pse(kernels, self.min_area) |
|
return self.generate_box(score, label, shape) |
|
|
|
def generate_box(self, score, label, shape): |
|
src_h, src_w, ratio_h, ratio_w = shape |
|
label_num = np.max(label) + 1 |
|
|
|
boxes = [] |
|
scores = [] |
|
for i in range(1, label_num): |
|
ind = label == i |
|
points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1] |
|
|
|
if points.shape[0] < self.min_area: |
|
label[ind] = 0 |
|
continue |
|
|
|
score_i = np.mean(score[ind]) |
|
if score_i < self.box_thresh: |
|
label[ind] = 0 |
|
continue |
|
|
|
if self.box_type == 'quad': |
|
rect = cv2.minAreaRect(points) |
|
bbox = cv2.boxPoints(rect) |
|
elif self.box_type == 'poly': |
|
box_height = np.max(points[:, 1]) + 10 |
|
box_width = np.max(points[:, 0]) + 10 |
|
|
|
mask = np.zeros((box_height, box_width), np.uint8) |
|
mask[points[:, 1], points[:, 0]] = 255 |
|
|
|
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, |
|
cv2.CHAIN_APPROX_SIMPLE) |
|
bbox = np.squeeze(contours[0], 1) |
|
else: |
|
raise NotImplementedError |
|
|
|
bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w) |
|
bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h) |
|
boxes.append(bbox) |
|
scores.append(score_i) |
|
return boxes, scores |
|
|