Calligrapher / app.py
multimodalart's picture
feat: Enable MCP
7a07741 verified
raw
history blame
10.3 kB
import gradio as gr
import numpy as np
from datetime import datetime
import torch
from PIL import Image
import spaces
from huggingface_hub import snapshot_download
from pipeline_calligrapher import CalligrapherPipeline
from models.calligrapher import Calligrapher
from models.transformer_flux_inpainting import FluxTransformer2DModel
from utils import process_gradio_source, get_bbox_from_mask, crop_image_from_bb, \
resize_img_and_pad, generate_context_reference_image
# Function of loading pre-trained models.
def load_models():
snapshot_download(
repo_id="Calligrapher2025/Calligrapher",
allow_patterns="calligrapher.bin",
local_dir="./",
)
print("calligrapher.bin successfully downloaded!")
transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-Fill-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16)
pipe = CalligrapherPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer,
torch_dtype=torch.bfloat16).to("cuda")
model = Calligrapher(pipe,
image_encoder_path="google/siglip-so400m-patch14-384",
calligrapher_path="calligrapher.bin",
device="cuda", num_tokens=128)
return model
# Init models.
model = load_models()
print('Model loaded!')
@spaces.GPU()
def process_and_generate(editor_component, reference_image, prompt, height, width,
scale, steps=50, seed=42, use_context=True, num_images=1):
"""
Process input images and generate customized text images using the Calligrapher model.
This function handles the complete pipeline from processing user inputs through the image editor,
preparing reference images, applying masks, and generating multiple customized text images
based on the provided parameters.
Args:
editor_component: Gradio ImageEditor component containing the source image and mask drawings.
reference_image: PIL Image object of the reference style image, or None for self-reference.
prompt: String describing the desired text content.
height: Integer height of the output image in pixels.
width: Integer width of the output image in pixels.
scale: Float value controlling the generation strength (0.0 to 2.0).
steps: Integer number of inference steps for the generation process (default: 50).
seed: Integer random seed for reproducible generation (default: 42).
use_context: Boolean flag to include context reference in generation (default: True).
num_images: Integer number of images to generate (default: 1).
Returns:
Tuple containing:
- mask_vis: PIL Image of the processed mask (with context removed if applicable).
- reference_image_to_encoder: PIL Image of the resized reference image used by the encoder.
- all_generated_images: List of tuples, each containing (generated_image, caption_string).
"""
print('Begin processing!')
# Get source, mask, and cropped images from gr.ImageEditor.
source_image, mask_image, cropped_image = process_gradio_source(editor_component)
# Resize source and mask.
source_image = source_image.resize((width, height))
mask_image = mask_image.resize((width, height), Image.NEAREST)
mask_np = np.array(mask_image)
mask_np[mask_np > 0] = 255
mask_image = Image.fromarray(mask_np.astype(np.uint8))
if reference_image is None:
# If self-inpaint (no input ref): (1) get bounding box from the mask and (2) perform cropping to get the ref image.
tl, br = get_bbox_from_mask(mask_image)
# Convert irregularly shaped masks into rectangles.
reference_image = crop_image_from_bb(source_image, tl, br)
# Raw reference image before resizing.
reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=(512, 512))
if use_context:
reference_context = generate_context_reference_image(reference_image, width)
# Concat the context on the top of the input masked image in the pixel space.
source_with_context = Image.new(source_image.mode, (width, reference_context.size[1] + height))
source_with_context.paste(reference_context, (0, 0))
source_with_context.paste(source_image, (0, reference_context.size[1]))
# Concat the zero mask on the top of the mask image.
mask_with_context = Image.new(mask_image.mode,
(mask_image.size[0],
reference_context.size[1] + mask_image.size[0]),
color=0)
mask_with_context.paste(mask_image, (0, reference_context.size[1]))
source_image = source_with_context
mask_image = mask_with_context
all_generated_images = []
for i in range(num_images):
res = model.generate(
image=source_image,
mask_image=mask_image,
ref_image=reference_image_to_encoder,
prompt=prompt,
scale=scale,
num_inference_steps=steps,
width=source_image.size[0],
height=source_image.size[1],
seed=seed + i,
)[0]
if use_context:
res_vis = res.crop((0, reference_context.size[1], res.width, res.height)) # remove context
mask_vis = mask_image.crop(
(0, reference_context.size[1], mask_image.width, mask_image.height)) # remove context mask
else:
res_vis = res
mask_vis = mask_image
all_generated_images.append((res_vis, f"Generating {i + 1} (Seed: {seed + i})"))
return mask_vis, reference_image_to_encoder, all_generated_images
# Main gradio codes.
with gr.Blocks(theme="default", css=".image-editor img {max-width: 70%; height: 70%;}") as demo:
gr.Markdown(
"""
# ๐Ÿ–Œ๏ธ Calligrapher: Freestyle Text Image Customization    [[Code]](https://github.com/Calligrapher2025/Calligrapher) [[Project Page]](https://calligrapher2025.github.io/Calligrapher/)
### Consider giving a star to the [project](https://github.com/Calligrapher2025/Calligrapher) if you find it useful!
"""
)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("### ๐ŸŽจ Image Editing Panel")
editor_component = gr.ImageEditor(
label="Upload or Draw",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=True,
interactive=True,
)
gr.Markdown("### ๐Ÿ“ค Output Result")
gallery = gr.Gallery(label="๐Ÿ–ผ๏ธ Result Gallery")
gr.Markdown(
"""<br>
### โœจUser Tips:
1. **Speed vs Quality Trade-off.** Use fewer steps (e.g., 10-step which takes ~4s/image on a single A6000 GPU) for faster generation, but quality may be lower.
2. **Inpaint Position Freedom.** Inpainting positions are flexible - they don't necessarily need to match the original text locations in the input image.
3. **Iterative Editing.** Drag outputs from the gallery to the Image Editing Panel (clean the Editing Panel first) for quick refinements.
4. **Mask Optimization.** Adjust mask size/aspect ratio to match your desired content. The model tends to fill the masks, and harmonizes the generation with background in terms of color and lighting.
5. **Reference Image Tip.** White-background references improve style consistency - the encoder also considers background context of the given reference image.
6. **Resolution Balance.** Very high-resolution generation sometimes triggers spelling errors. 512/768px are recommended considering the model is trained under the resolution of 512.
"""
)
with gr.Column(scale=1):
gr.Markdown("### โš™๏ธSettings")
reference_image = gr.Image(
label="๐Ÿงฉ Reference Image (skip this if self-reference)",
sources=["upload"],
type="pil",
)
prompt = gr.Textbox(
label="๐Ÿ“ Prompt",
placeholder="The text is 'Image'...",
value="The text is 'Image'."
)
with gr.Accordion("๐Ÿ”ง Additional Settings", open=True):
with gr.Row():
height = gr.Number(label="Height", value=512, precision=0)
width = gr.Number(label="Width", value=512, precision=0)
scale = gr.Slider(0.0, 2.0, 1.0, step=0.1, value=1.0, label="๐ŸŽš๏ธ Strength")
steps = gr.Slider(1, 100, 50, step=1, label="๐Ÿ” Steps")
with gr.Row():
seed = gr.Number(label="๐ŸŽฒ Seed", value=56, precision=0)
use_context = gr.Checkbox(value=True, label="๐Ÿ” Use Context", interactive=True)
num_images = gr.Slider(1, 16, 2, step=1, label="๐Ÿ–ผ๏ธ Sample Amount")
run_btn = gr.Button("๐Ÿš€ Run", variant="primary")
mask_output = gr.Image(label="๐ŸŸฉ Mask Demo")
reference_demo = gr.Image(label="๐Ÿงฉ Reference Demo")
# Run button event.
run_btn.click(
fn=process_and_generate,
inputs=[
editor_component,
reference_image,
prompt,
height,
width,
scale,
steps,
seed,
use_context,
num_images
],
outputs=[
mask_output,
reference_demo,
gallery
]
)
if __name__ == "__main__":
demo.launch(mcp_server=True)