Spaces:
Running
Running
File size: 10,942 Bytes
38826eb 9b8968e 38826eb 9b8968e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
from transformers.cache_utils import DynamicCache
def get_tokenized_chat(tokenizer, prompt, doc):
messages = [
{
"role": "user",
"content": f"{prompt}\n\n{doc}",
},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
return tokenized_chat
def tokenize_doc_in_progress(tokenizer, doc_in_progress):
if len(doc_in_progress) == 0:
# Some tokenizers give tensors of the wrong dtype if the input is empty
return torch.empty(0, dtype=torch.int64)
doc_in_progress_ids = tokenizer(
doc_in_progress, return_tensors='pt')['input_ids'][0]
# strip the first token, the "beginning of document" token
# TODO: make this robust to switching models
# since some models will use different special tokens
doc_in_progress_ids = doc_in_progress_ids[1:]
return doc_in_progress_ids
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc)
assert len(tokenized_chat.shape) == 1
if updated_doc is None or len(updated_doc.strip()) == 0:
updated_doc = doc
updated_doc_ids = tokenize_doc_in_progress(tokenizer, updated_doc)
joined_ids = torch.cat([tokenized_chat, updated_doc_ids])
# Compute the next-token logits for the entire document
with torch.no_grad():
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
highlights = []
length_so_far = 0
for idx in range(len(tokenized_chat), len(joined_ids)):
probs = logits[idx - 1].softmax(dim=-1)
token_id = joined_ids[idx]
token = tokenizer.decode(token_id)
token_loss = -probs[token_id].log().item()
topk_tokens = probs.topk(k).indices.cpu().numpy().tolist()
topk_tokens_decoded = tokenizer.batch_decode(topk_tokens, skip_special_tokens=True)
highlights.append(dict(
start=length_so_far,
end=length_so_far + len(token),
token=token,
token_loss=token_loss,
most_likely_token=topk_tokens_decoded[0],
topk_tokens=topk_tokens_decoded,
))
length_so_far += len(token)
return highlights
def get_next_token_predictions_inner(
model, tokenizer, original_doc, prompt, doc_in_progress, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
device = model.device
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
hypotheses = joined_ids[None].to(model.device)
# For each of the k next tokens, generate most-likely next tokens and append back on until we
# reach a token with a space
past_key_values = DynamicCache()
with torch.no_grad():
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
branch_tokens = model_outs_onestep.logits[0, -1].topk(k).indices
# split the cache into k reps. We pretend we're doing a "Beam search"...
past_key_values.reorder_cache(torch.zeros((k,), dtype=torch.long, device=device))
# Now call the model again, passing the kv cache, so we can continue generating.
# Each of the k next tokens will be considered as one sequence in a "batch".
next_tokens_as_batch = branch_tokens.unsqueeze(1)
assert next_tokens_as_batch.shape == (k, 1)
position_id_for_final_token = joined_ids.shape[0]
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
with torch.no_grad():
model_outs = model(
next_tokens_as_batch,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
# the cache surprisingly doesn't know the position of the last token
cache_position=cache_position
)
# Grab the single most likely token from each of the k sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
# Stick them at the end of the branch tokens.
assert most_likely_token_ids.shape == (k,)
lookahead_sequences = torch.cat([
branch_tokens.unsqueeze(1),
most_likely_token_ids.unsqueeze(1)
], dim=1)
assert lookahead_sequences.shape == (k, 2)
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return decoded_next_tokens, next_token_logits
def get_next_token_predictions_generate(
model, tokenizer, original_doc, prompt, doc_in_progress, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
context_without_special_tokens = tokenizer.batch_decode(joined_ids, skip_special_tokens=True)
prefix_length = len(context_without_special_tokens)
hypotheses = joined_ids[None].to(model.device)
generation_output = model.generate(
hypotheses,
return_dict_in_generate=True,
output_scores=True,
num_beams=5, num_beam_groups=5, max_new_tokens=10, do_sample=False, diversity_penalty=1e5, top_k=None, num_return_sequences=5)#, token_healing=True, tokenizer=tokenizer)
sequences = [
decoded[prefix_length:]
for decoded in tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
]
return sequences,
def get_next_token_predictions_slow(
model, tokenizer, original_doc, prompt, doc_in_progress, k):
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
hypotheses = joined_ids[None].to(model.device)
# For each of the k next tokens, generate most-likely next tokens and append back on until we
# reach a token with a space
with torch.no_grad():
model_outs = model(hypotheses, output_hidden_states=True)
next_token_logits = model_outs.logits[0, -1]
branch_tokens = next_token_logits.topk(k).indices
# Slow mode: concat the branch tokens to the hypotheses.
# Then call the model on the full sequence.
# This is slow because the beginning of the sequence is re-processed each time.
hypotheses_with_next_tokens = torch.cat([
torch.repeat_interleave(hypotheses, k, dim=0),
branch_tokens.unsqueeze(1)
], dim=1)
assert hypotheses_with_next_tokens.shape == (k, len(joined_ids) + 1)
with torch.no_grad():
model_outs = model(hypotheses_with_next_tokens)
# Grab the single most likely token from each of the k sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
# Stick them at the end of the branch tokens.
assert most_likely_token_ids.shape == (k,)
lookahead_sequences = torch.cat([
branch_tokens.unsqueeze(1),
most_likely_token_ids.unsqueeze(1)
], dim=1)
assert lookahead_sequences.shape == (k, 2)
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return decoded_next_tokens, next_token_logits
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
device = model.device
final_message_is_assistant = messages[-1]['role'] == "assistant"
print(f"final_message_is_assistant: {final_message_is_assistant}")
# if final_message_is_assistant:
# tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, continue_final_message=True, return_tensors="pt").to(model.device)
# else:
# tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
# This fails with
# RuntimeError: Index put requires the source and destination dtypes match, got BFloat16 for the destination and Float for the source.
# generations = model.generate(
# tokenized_chat,
# num_return_sequences=n_branch_tokens,
# num_beam_groups=n_branch_tokens, num_beams=n_branch_tokens,
# do_sample=False, max_new_tokens=n_future_tokens, diversity_penalty=1e5, top_k=None,
# return_dict_in_generate=True, output_scores=True)
# Instead, we'll do this in two steps:
# 1. Get the next token predictions for the k most likely continuations
from transformers.cache_utils import DynamicCache
past_key_values = DynamicCache()
with torch.no_grad():
model_outs = model(
tokenized_chat,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
)
branch_tokens = model_outs.logits[0, -1].topk(n_branch_tokens).indices
hypotheses = branch_tokens.unsqueeze(1)
# Branch off the k most likely continuations
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
# 2. Generate the next n_future_tokens for each branch
for i in range(n_future_tokens):
position_id_for_final_token = tokenized_chat.shape[0] + i
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
final_token_ids = hypotheses[:, -1:]
with torch.no_grad():
model_outs = model(
final_token_ids,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
cache_position=cache_position
)
# Grab the single most likely token from each of the k sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
hypotheses = torch.cat([
hypotheses,
most_likely_token_ids.unsqueeze(1)
], dim=1)
generated_docs = tokenizer.batch_decode(hypotheses, skip_special_tokens=True)
return generated_docs |