Spaces:
Running
Running
File size: 7,840 Bytes
1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 e33013a 1b6a5d7 d000502 1b6a5d7 d000502 1b6a5d7 d000502 1b6a5d7 8c99b80 1b6a5d7 d000502 1b6a5d7 8c99b80 1b6a5d7 dc6136e 1b6a5d7 865abea dc6136e 1b6a5d7 d000502 1b6a5d7 dc6136e 1b6a5d7 dc6136e 1b6a5d7 dc6136e 1b6a5d7 dc6136e 1b6a5d7 dc6136e 1b6a5d7 dc6136e 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 989ef27 1b6a5d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import streamlit as st
import requests
def landing():
st.title("Writing Tools Prototypes")
st.markdown("Click one of the links below to see a prototype in action.")
st.page_link(rewrite_page, label="Rewrite with predictions", icon="π")
st.page_link(highlight_page, label="Highlight locations for possible edits", icon="ποΈ")
st.page_link(generate_page, label="Generate revisions", icon="π")
st.markdown("*Note*: These services send data to a remote server for processing. The server logs requests. Don't use sensitive or identifiable information on this page.")
def show_token(token):
token_display = token.replace('\n', 'β΅').replace('\t', 'β₯')
# Escape Markdown
for c in "\\`*_{}[]()#+-.!":
token_display = token_display.replace(c, "\\" + c)
return token_display
def get_prompt(*, include_generation_options, default="Rewrite this document to be more clear and concise."):
# pick a preset prompt or "other"
generation_options = [
"Summarize this document in one sentence.",
"Translate this document into Spanish.",
"Write a concise essay according to this outline.",
"Write a detailed essay according to this outline.",
]
with st.popover("Prompt options"):
prompt_options = [
"Rewrite this document to be ...",
*(generation_options if include_generation_options else []),
"Other"
]
prompt = st.radio("Prompt", prompt_options, help="Instructions for what the bot should do.")
if prompt.startswith("Rewrite this document to be"):
rewrite_adjs = ["clear and concise", "more detailed and engaging", "more formal and professional", "more casual and conversational", "more technical and precise", "more creative and imaginative", "more persuasive and compelling"]
prompt = "Rewrite this document to be " + st.radio("to be ...", rewrite_adjs) + "."
elif prompt == "Other":
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.")
return prompt
@st.cache_data
def get_preds_api(prompt, original_doc, rewrite_in_progress, k=5):
response = requests.get("https://tools.kenarnold.org/api/next_token", params=dict(prompt=prompt, original_doc=original_doc, doc_in_progress=rewrite_in_progress, k=k))
response.raise_for_status()
return response.json()['next_tokens']
def rewrite_with_predictions():
st.title("Rewrite with Predictive Text")
prompt = get_prompt(include_generation_options=True)
st.write("Prompt:", prompt)
cols = st.columns(2)
with cols[0]:
doc = st.text_area("Document", "", placeholder="Paste your document here.", height=300)
st.button("Update document")
with cols[1]:
rewrite_in_progress = st.text_area("Rewrite in progress", key='rewrite_in_progress', value="", placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300)
if doc.strip() == "" and rewrite_in_progress.strip() == "":
# Allow partial rewrites as a hack to enable autocomplete from the prompt
st.stop()
tokens = get_preds_api(prompt, doc, rewrite_in_progress)
def append_token(word):
st.session_state['rewrite_in_progress'] = (
st.session_state['rewrite_in_progress'] + word
)
allow_multi_word = st.checkbox("Allow multi-word predictions", value=False)
for i, (col, token) in enumerate(zip(st.columns(len(tokens)), tokens)):
with col:
if not allow_multi_word and ' ' in token[1:]:
token = token[0] + token[1:].split(' ', 1)[0]
token_display = show_token(token)
st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True)
@st.cache_data
def get_highlights(prompt, doc, updated_doc):
response = requests.get("https://tools.kenarnold.org/api/highlights", params=dict(prompt=prompt, doc=doc, updated_doc=updated_doc))
return response.json()['highlights']
def highlight_edits():
st.title("Highlight locations for possible edits")
import html
prompt = get_prompt(include_generation_options=False)
st.write("Prompt:", prompt)
cols = st.columns(2)
with cols[0]:
doc = st.text_area("Document", "Deep learning neural network technology advances are pretty cool if you are careful to use it in ways that don't take stuff from people.", height=300)
with cols[1]:
updated_doc = st.text_area("Updated Doc", placeholder="Your edited document. Leave this blank to use your original document.", height=300)
spans = get_highlights(prompt, doc, updated_doc)
if len(spans) < 2:
st.write("No spans found.")
st.stop()
highest_loss = max(span['token_loss'] for span in spans[1:])
for span in spans:
span['loss_ratio'] = span['token_loss'] / highest_loss
num_different = sum(span['token'] != span['most_likely_token'] for span in spans)
loss_ratios_for_different = [span['loss_ratio'] for span in spans if span['token'] != span['most_likely_token']]
loss_ratios_for_different.sort(reverse=True)
if num_different == 0:
st.write("No possible edits found.")
st.stop()
num_to_show = st.slider("Number of edits to show", 1, num_different, value=num_different // 2)
min_loss = loss_ratios_for_different[num_to_show - 1]
html_out = ''
for span in spans:
show = span['token'] != span['most_likely_token'] and span['loss_ratio'] >= min_loss
hover = f'<span style="position: absolute; top: -10px; left: 5px; font-size: 10px; min-width:6em; line-height: 1; color: grey; transform-origin: left; transform: rotate(-15deg)">{span["most_likely_token"]}</span>'
html_out += '<span style="position: relative; color: {color}" title="{title}">{hover}{orig_token}</span>'.format(
color="blue" if show else "black",
title=html.escape(span["most_likely_token"]).replace('\n', ' ') if show else '',
orig_token=html.escape(span["token"]).replace('\n', '<br>'),
hover=hover if show else ''
)
html_out = f"<p style=\"background: white; line-height: 2.5;\">{html_out}</p>"
st.write(html_out, unsafe_allow_html=True)
if st.checkbox("Show details"):
import pandas as pd
st.write(pd.DataFrame(spans)[['token', 'token_loss', 'most_likely_token', 'loss_ratio']])
st.write("Token loss is the difference between the original token and the most likely token. The loss ratio is the token loss divided by the highest token loss in the document.")
def get_revised_docs(prompt, doc, n):
response = requests.get("https://tools.kenarnold.org/api/gen_revisions", params=dict(prompt=prompt, doc=doc, n=n))
return response.json()
def generate_revisions():
st.title("Generate revised document")
import html
prompt = get_prompt(include_generation_options=False)
st.write("Prompt:", prompt)
doc = st.text_area("Document", "", height=300)
revised_docs = get_revised_docs(prompt, doc, n=5)['revised_docs']
tabs = st.tabs([f"Draft {i+1}" for i in range(len(revised_docs))])
for i, tab in enumerate(tabs):
with tab:
st.write(revised_docs[i]['doc_text'])
rewrite_page = st.Page(rewrite_with_predictions, title="Rewrite with predictions", icon="π")
highlight_page = st.Page(highlight_edits, title="Highlight locations for possible edits", icon="ποΈ")
generate_page = st.Page(generate_revisions, title="Generate revisions", icon="π")
# Manually specify the sidebar
page = st.navigation([
st.Page(landing, title="Home", icon="π "),
highlight_page,
rewrite_page,
generate_page
])
page.run()
|