Spaces:
Running
Running
File size: 8,584 Bytes
38826eb 9b8968e 38826eb 9b8968e 38826eb 9b8968e 38826eb 9b8968e 38826eb 9b8968e 38826eb 9b8968e 38826eb 9b8968e 22b91c8 3c6b0e4 22b91c8 3c6b0e4 22b91c8 9b8968e 38826eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import argparse
import os
import time
from contextlib import asynccontextmanager
from pathlib import Path
from typing import Dict, List, Optional
from pydantic import BaseModel
import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.testclient import TestClient
from transformers import AutoModelForCausalLM, AutoTokenizer
from custom_llm_inference import get_highlights_inner, get_next_token_predictions_inner, continue_messages_inner
ml_models = {}
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", action="store_true", help="Enable GPU usage")
args = parser.parse_args()
USE_GPU = args.gpu
if not USE_GPU:
print("Running without GPU. To enable GPU, run with the --gpu flag.")
@asynccontextmanager
async def models_lifespan(app: FastAPI):
#model_name = 'google/gemma-1.1-7b-it'
#model_name = 'google/gemma-1.1-2b-it'
model_name = 'google/gemma-2-9b-it'
dtype = torch.bfloat16 if USE_GPU else torch.float16
ml_models["llm"] = llm = {
'tokenizer': AutoTokenizer.from_pretrained(model_name),
'model': AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto" if USE_GPU else "cpu",
torch_dtype=dtype,
attn_implementation='eager'
)
}
print("Loaded llm with device map:")
print(llm['model'].hf_device_map)
# Print timing info for each endpoint
print("\nRunning endpoint tests...")
test_doc = "This is a test document that needs to be revised for clarity and conciseness."
test_prompt = "Make this more clear and concise."
client = TestClient(app)
start = time.time()
response = client.get("/api/highlights",
params={"doc": test_doc, "prompt": test_prompt})
print(f"Highlights endpoint: {time.time() - start:.2f}s")
start = time.time()
response = client.get("/api/next_token",
params={"original_doc": test_doc, "prompt": test_prompt, "doc_in_progress": "This is"})
print(f"Next token endpoint: {time.time() - start:.2f}s")
start = time.time()
response = client.get("/api/gen_revisions",
params={"doc": test_doc, "prompt": test_prompt, "n": 1, "max_length": 16})
print(f"Gen revisions endpoint: {time.time() - start:.2f}s")
yield
# Release resources on exit
ml_models.clear()
DEBUG = os.getenv("DEBUG") or False
PORT = int(os.getenv("PORT") or "19570")
app = FastAPI(lifespan=models_lifespan)
origins = [
"*",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/api/highlights")
def get_highlights(doc: str, prompt: Optional[str] = None, updated_doc: Optional[str] = '', k: Optional[int] = 5):
''' Example of using this in JavaScript:
let url = new URL('http://localhost:8000/api/highlights')
url.searchParams.append('doc', 'This is a test document. It is a test document because it is a test document.')
url.searchParams.append('prompt', 'Rewrite this document to be more concise.')
url.searchParams.append('updated_doc', 'This is a test document.')
let response = await fetch(url)
'''
llm = ml_models['llm']
model = llm['model']
tokenizer = llm['tokenizer']
if prompt is None:
prompt = "Rewrite this document to be more concise."
highlights = get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k)
return {'highlights': highlights}
@app.get('/api/next_token')
def get_next_token_predictions(original_doc: str,
prompt: str,
doc_in_progress: str,
k: Optional[int] = 5):
model = ml_models['llm']['model']
tokenizer = ml_models['llm']['tokenizer']
decoded_next_tokens, next_token_logits = get_next_token_predictions_inner(
model, tokenizer, original_doc, prompt, doc_in_progress, k)
return {
'next_tokens': decoded_next_tokens
}
@app.get('/api/gen_revisions')
def gen_revisions(
prompt: str,
doc: str,
n: Optional[int] = 5,
max_length: Optional[int] = 1024,
):
model = ml_models['llm']['model']
tokenizer = ml_models['llm']['tokenizer']
messages = [
{
"role": "user",
"content": f"{prompt}\n\n{doc}",
},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
generations = model.generate(
tokenized_chat, num_return_sequences=n,
max_new_tokens=max_length, do_sample=True, top_k=50, top_p=0.95, temperature=0.5,
return_dict_in_generate=True, output_scores=True)
generated_docs = tokenizer.batch_decode(generations.sequences, skip_special_tokens=True)
#print(generations.scores)
# Remove prompt text. see https://github.com/huggingface/transformers/blob/v4.46.2/src/transformers/pipelines/text_generation.py#L37
prompt_length = len(
tokenizer.decode(
tokenized_chat[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
))
return {
'revised_docs': [dict(doc_text=doc[prompt_length:]) for doc in generated_docs]
}
class Message(BaseModel):
role: str
content: str
class ContinueMessagesRequest(BaseModel):
messages: List[Message]
n_branch_tokens: int = 5
n_future_tokens: int = 5
@app.post('/api/continue_messages')
def continue_messages(request: ContinueMessagesRequest):
messages = [{"role": m.role, "content": m.content} for m in request.messages]
if len(messages) == 0:
raise HTTPException(status_code=400, detail="At least one message must be provided.")
n_branch_tokens = request.n_branch_tokens
n_future_tokens = request.n_future_tokens
model = ml_models['llm']['model']
tokenizer = ml_models['llm']['tokenizer']
generated_docs = continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens)
return {
'continuations': [dict(doc_text=doc) for doc in generated_docs]
}
@app.post('/api/logprobs')
def logprobs(request: ContinueMessagesRequest):
messages = [{"role": m.role, "content": m.content} for m in request.messages]
if len(messages) == 0:
raise HTTPException(status_code=400, detail="At least one message must be provided.")
model = ml_models['llm']['model']
tokenizer = ml_models['llm']['tokenizer']
# Work around a bug when the last message is empty
trim_last_message = False
if messages[-1]['content'] == '':
messages[-1]['content'] = '.'
trim_last_message = True
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
if trim_last_message:
tokenized_chat = tokenized_chat[:, :-1]
# Compute all logits
with torch.no_grad():
logits = model(tokenized_chat).logits
k = request.n_branch_tokens
# Return a list of tokens:
# {
# "token": "the",
# "logprobs": [{"the": -0.1, "a": -0.2, ...}]
# }
# logprobs are the top-k logprobs for each token, plus the chosen token in case it is not in the top-k
# The very first token will have no logprobs, since it is the beginning of the document
# The very last token will have "token" set to None, and "logprobs" will be the logprobs for the next token
all_logprobs = []
for idx in range(len(tokenized_chat[0]) + 1):
if idx == len(tokenized_chat[0]):
actual_token_id = None
token = None
else:
actual_token_id = tokenized_chat[0, idx].item()
token = tokenizer.decode(actual_token_id)
if idx == 0:
token_logprobs = []
else:
logprobs = logits[0, idx - 1].log_softmax(dim=-1)
token_ids_to_return = logprobs.topk(k).indices.cpu().numpy().tolist()
if actual_token_id is not None and actual_token_id not in token_ids_to_return:
token_ids_to_return.append(actual_token_id)
token_logprobs = {tokenizer.decode(i): logprobs[i].item() for i in token_ids_to_return}
all_logprobs.append(dict(token=token, logprobs=token_logprobs))
return {
'logprobs': all_logprobs
}
if __name__ == "__main__":
uvicorn.run(app, host="localhost", port=PORT)
|