Spaces:
Running
Running
Looks like I never committed these improvements to the backend.
Browse files- custom_llm_inference.py +44 -97
custom_llm_inference.py
CHANGED
@@ -63,37 +63,29 @@ def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
|
|
63 |
return highlights
|
64 |
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
device = model.device
|
74 |
-
|
75 |
-
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
76 |
-
hypotheses = joined_ids[None].to(model.device)
|
77 |
-
|
78 |
-
# For each of the k next tokens, generate most-likely next tokens and append back on until we
|
79 |
-
# reach a token with a space
|
80 |
-
|
81 |
past_key_values = DynamicCache()
|
82 |
|
83 |
with torch.no_grad():
|
84 |
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
|
85 |
|
86 |
-
branch_tokens = model_outs_onestep.logits[0, -1].topk(
|
87 |
|
88 |
-
# split the cache into
|
89 |
-
past_key_values.reorder_cache(torch.zeros((
|
90 |
|
91 |
# Now call the model again, passing the kv cache, so we can continue generating.
|
92 |
-
# Each of the
|
93 |
next_tokens_as_batch = branch_tokens.unsqueeze(1)
|
94 |
-
assert next_tokens_as_batch.shape == (
|
95 |
|
96 |
-
position_id_for_final_token =
|
97 |
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
|
98 |
with torch.no_grad():
|
99 |
model_outs = model(
|
@@ -105,44 +97,52 @@ def get_next_token_predictions_inner(
|
|
105 |
cache_position=cache_position
|
106 |
)
|
107 |
|
108 |
-
# Grab the single most likely token from each of the
|
109 |
next_token_logits = model_outs.logits[:, -1]
|
110 |
vocab_size = model.config.vocab_size
|
111 |
-
assert next_token_logits.shape == (
|
112 |
most_likely_token_ids = next_token_logits.argmax(dim=-1)
|
113 |
|
114 |
# Stick them at the end of the branch tokens.
|
115 |
-
assert most_likely_token_ids.shape == (
|
116 |
lookahead_sequences = torch.cat([
|
117 |
branch_tokens.unsqueeze(1),
|
118 |
most_likely_token_ids.unsqueeze(1)
|
119 |
], dim=1)
|
120 |
-
assert lookahead_sequences.shape == (
|
|
|
121 |
|
122 |
-
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
|
123 |
-
return decoded_next_tokens, next_token_logits
|
124 |
|
125 |
-
def
|
126 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
127 |
|
128 |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
|
129 |
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
|
130 |
|
|
|
|
|
131 |
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
132 |
-
context_without_special_tokens = tokenizer.batch_decode(joined_ids, skip_special_tokens=True)
|
133 |
-
prefix_length = len(context_without_special_tokens)
|
134 |
hypotheses = joined_ids[None].to(model.device)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
|
148 |
def get_next_token_predictions_slow(
|
@@ -196,67 +196,14 @@ def get_next_token_predictions_slow(
|
|
196 |
|
197 |
|
198 |
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
|
|
|
199 |
device = model.device
|
200 |
|
201 |
-
final_message_is_assistant = messages[-1]['role'] == "assistant"
|
202 |
-
print(f"final_message_is_assistant: {final_message_is_assistant}")
|
203 |
-
# if final_message_is_assistant:
|
204 |
-
# tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, continue_final_message=True, return_tensors="pt").to(model.device)
|
205 |
-
# else:
|
206 |
-
# tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
207 |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
|
208 |
-
|
209 |
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
# generations = model.generate(
|
214 |
-
# tokenized_chat,
|
215 |
-
# num_return_sequences=n_branch_tokens,
|
216 |
-
# num_beam_groups=n_branch_tokens, num_beams=n_branch_tokens,
|
217 |
-
# do_sample=False, max_new_tokens=n_future_tokens, diversity_penalty=1e5, top_k=None,
|
218 |
-
# return_dict_in_generate=True, output_scores=True)
|
219 |
-
|
220 |
-
# Instead, we'll do this in two steps:
|
221 |
-
# 1. Get the next token predictions for the k most likely continuations
|
222 |
-
from transformers.cache_utils import DynamicCache
|
223 |
-
past_key_values = DynamicCache()
|
224 |
-
with torch.no_grad():
|
225 |
-
model_outs = model(
|
226 |
-
tokenized_chat,
|
227 |
-
past_key_values=past_key_values,
|
228 |
-
output_hidden_states=True,
|
229 |
-
use_cache=True,
|
230 |
-
)
|
231 |
-
branch_tokens = model_outs.logits[0, -1].topk(n_branch_tokens).indices
|
232 |
-
|
233 |
-
hypotheses = branch_tokens.unsqueeze(1)
|
234 |
-
# Branch off the k most likely continuations
|
235 |
-
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
|
236 |
|
237 |
-
|
238 |
-
for i in range(n_future_tokens):
|
239 |
-
position_id_for_final_token = tokenized_chat.shape[0] + i
|
240 |
-
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
|
241 |
-
final_token_ids = hypotheses[:, -1:]
|
242 |
-
with torch.no_grad():
|
243 |
-
model_outs = model(
|
244 |
-
final_token_ids,
|
245 |
-
past_key_values=past_key_values,
|
246 |
-
output_hidden_states=True,
|
247 |
-
use_cache=True,
|
248 |
-
cache_position=cache_position
|
249 |
-
)
|
250 |
-
|
251 |
-
# Grab the single most likely token from each of the k sequences
|
252 |
-
next_token_logits = model_outs.logits[:, -1]
|
253 |
-
vocab_size = model.config.vocab_size
|
254 |
-
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
|
255 |
-
most_likely_token_ids = next_token_logits.argmax(dim=-1)
|
256 |
-
hypotheses = torch.cat([
|
257 |
-
hypotheses,
|
258 |
-
most_likely_token_ids.unsqueeze(1)
|
259 |
-
], dim=1)
|
260 |
-
|
261 |
-
generated_docs = tokenizer.batch_decode(hypotheses, skip_special_tokens=True)
|
262 |
return generated_docs
|
|
|
63 |
return highlights
|
64 |
|
65 |
|
66 |
+
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
|
67 |
+
"""
|
68 |
+
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
|
69 |
+
"""
|
70 |
+
assert len(hypotheses.shape) == 2
|
71 |
+
assert hypotheses.shape[0] == 1
|
72 |
+
n_tokens_so_far = hypotheses.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
past_key_values = DynamicCache()
|
74 |
|
75 |
with torch.no_grad():
|
76 |
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
|
77 |
|
78 |
+
branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices
|
79 |
|
80 |
+
# split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"...
|
81 |
+
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
|
82 |
|
83 |
# Now call the model again, passing the kv cache, so we can continue generating.
|
84 |
+
# Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch".
|
85 |
next_tokens_as_batch = branch_tokens.unsqueeze(1)
|
86 |
+
assert next_tokens_as_batch.shape == (n_branch_tokens, 1)
|
87 |
|
88 |
+
position_id_for_final_token = n_tokens_so_far
|
89 |
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
|
90 |
with torch.no_grad():
|
91 |
model_outs = model(
|
|
|
97 |
cache_position=cache_position
|
98 |
)
|
99 |
|
100 |
+
# Grab the single most likely token from each of the n_branch_tokens sequences
|
101 |
next_token_logits = model_outs.logits[:, -1]
|
102 |
vocab_size = model.config.vocab_size
|
103 |
+
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
|
104 |
most_likely_token_ids = next_token_logits.argmax(dim=-1)
|
105 |
|
106 |
# Stick them at the end of the branch tokens.
|
107 |
+
assert most_likely_token_ids.shape == (n_branch_tokens,)
|
108 |
lookahead_sequences = torch.cat([
|
109 |
branch_tokens.unsqueeze(1),
|
110 |
most_likely_token_ids.unsqueeze(1)
|
111 |
], dim=1)
|
112 |
+
assert lookahead_sequences.shape == (n_branch_tokens, 2)
|
113 |
+
return lookahead_sequences, next_token_logits
|
114 |
|
|
|
|
|
115 |
|
116 |
+
def get_next_token_predictions_inner(
|
117 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
118 |
|
119 |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc)
|
120 |
doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress)
|
121 |
|
122 |
+
device = model.device
|
123 |
+
|
124 |
joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids])
|
|
|
|
|
125 |
hypotheses = joined_ids[None].to(model.device)
|
126 |
|
127 |
+
# Alternative approach: chat templates
|
128 |
+
tokenized_chat = tokenizer.apply_chat_template([
|
129 |
+
{"role": "user", "content": f"{prompt}\n\n{original_doc}"},
|
130 |
+
{"role": "assistant", "content": doc_in_progress}
|
131 |
+
], tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
|
132 |
+
|
133 |
+
# Compare them
|
134 |
+
if tokenized_chat.shape == hypotheses.shape and torch.all(tokenized_chat == hypotheses):
|
135 |
+
print("Tokenized chat and hypotheses match")
|
136 |
+
else:
|
137 |
+
print("FAIL: Tokenized chat and hypotheses do not match!")
|
138 |
+
print(f"{tokenized_chat=}")
|
139 |
+
print(f"{hypotheses=}")
|
140 |
+
|
141 |
+
lookahead_sequences, next_token_logits = get_lookahead_sequences(
|
142 |
+
model, tokenizer, hypotheses, k, device)
|
143 |
+
|
144 |
+
decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
|
145 |
+
return decoded_next_tokens, next_token_logits
|
146 |
|
147 |
|
148 |
def get_next_token_predictions_slow(
|
|
|
196 |
|
197 |
|
198 |
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
|
199 |
+
# Note: we're ignoring n_future_tokens right now since the old implementation was buggy.
|
200 |
device = model.device
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
|
|
|
203 |
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
|
204 |
|
205 |
+
lookahead_sequences, next_token_logits = get_lookahead_sequences(
|
206 |
+
model, tokenizer, tokenized_chat, n_branch_tokens, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return generated_docs
|