import torch from transformers.cache_utils import DynamicCache def get_tokenized_chat(tokenizer, prompt, doc): messages = [ { "role": "user", "content": f"{prompt}\n\n{doc}", }, ] tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0] return tokenized_chat def tokenize_doc_in_progress(tokenizer, doc_in_progress): if len(doc_in_progress) == 0: # Some tokenizers give tensors of the wrong dtype if the input is empty return torch.empty(0, dtype=torch.int64) doc_in_progress_ids = tokenizer( doc_in_progress, return_tensors='pt')['input_ids'][0] # strip the first token, the "beginning of document" token # TODO: make this robust to switching models # since some models will use different special tokens doc_in_progress_ids = doc_in_progress_ids[1:] return doc_in_progress_ids def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k): tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc) assert len(tokenized_chat.shape) == 1 if updated_doc is None or len(updated_doc.strip()) == 0: updated_doc = doc updated_doc_ids = tokenize_doc_in_progress(tokenizer, updated_doc) joined_ids = torch.cat([tokenized_chat, updated_doc_ids]) # Compute the next-token logits for the entire document with torch.no_grad(): logits = model(joined_ids[None].to(model.device)).logits[0].cpu() highlights = [] length_so_far = 0 for idx in range(len(tokenized_chat), len(joined_ids)): probs = logits[idx - 1].softmax(dim=-1) token_id = joined_ids[idx] token = tokenizer.decode(token_id) token_loss = -probs[token_id].log().item() topk_tokens = probs.topk(k).indices.cpu().numpy().tolist() topk_tokens_decoded = tokenizer.batch_decode(topk_tokens, skip_special_tokens=True) highlights.append(dict( start=length_so_far, end=length_so_far + len(token), token=token, token_loss=token_loss, most_likely_token=topk_tokens_decoded[0], topk_tokens=topk_tokens_decoded, )) length_so_far += len(token) return highlights def get_next_token_predictions_inner( model, tokenizer, original_doc, prompt, doc_in_progress, k): tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc) doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress) device = model.device joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids]) hypotheses = joined_ids[None].to(model.device) # For each of the k next tokens, generate most-likely next tokens and append back on until we # reach a token with a space past_key_values = DynamicCache() with torch.no_grad(): model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values) branch_tokens = model_outs_onestep.logits[0, -1].topk(k).indices # split the cache into k reps. We pretend we're doing a "Beam search"... past_key_values.reorder_cache(torch.zeros((k,), dtype=torch.long, device=device)) # Now call the model again, passing the kv cache, so we can continue generating. # Each of the k next tokens will be considered as one sequence in a "batch". next_tokens_as_batch = branch_tokens.unsqueeze(1) assert next_tokens_as_batch.shape == (k, 1) position_id_for_final_token = joined_ids.shape[0] cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device) with torch.no_grad(): model_outs = model( next_tokens_as_batch, past_key_values=past_key_values, output_hidden_states=True, use_cache=True, # the cache surprisingly doesn't know the position of the last token cache_position=cache_position ) # Grab the single most likely token from each of the k sequences next_token_logits = model_outs.logits[:, -1] vocab_size = model.config.vocab_size assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}" most_likely_token_ids = next_token_logits.argmax(dim=-1) # Stick them at the end of the branch tokens. assert most_likely_token_ids.shape == (k,) lookahead_sequences = torch.cat([ branch_tokens.unsqueeze(1), most_likely_token_ids.unsqueeze(1) ], dim=1) assert lookahead_sequences.shape == (k, 2) decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) return decoded_next_tokens, next_token_logits def get_next_token_predictions_generate( model, tokenizer, original_doc, prompt, doc_in_progress, k): tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc) doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress) joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids]) context_without_special_tokens = tokenizer.batch_decode(joined_ids, skip_special_tokens=True) prefix_length = len(context_without_special_tokens) hypotheses = joined_ids[None].to(model.device) generation_output = model.generate( hypotheses, return_dict_in_generate=True, output_scores=True, num_beams=5, num_beam_groups=5, max_new_tokens=10, do_sample=False, diversity_penalty=1e5, top_k=None, num_return_sequences=5)#, token_healing=True, tokenizer=tokenizer) sequences = [ decoded[prefix_length:] for decoded in tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True) ] return sequences, def get_next_token_predictions_slow( model, tokenizer, original_doc, prompt, doc_in_progress, k): tokenized_chat = get_tokenized_chat(tokenizer, prompt, original_doc) doc_in_progress_ids = tokenize_doc_in_progress(tokenizer, doc_in_progress) joined_ids = torch.cat([tokenized_chat, doc_in_progress_ids]) hypotheses = joined_ids[None].to(model.device) # For each of the k next tokens, generate most-likely next tokens and append back on until we # reach a token with a space with torch.no_grad(): model_outs = model(hypotheses, output_hidden_states=True) next_token_logits = model_outs.logits[0, -1] branch_tokens = next_token_logits.topk(k).indices # Slow mode: concat the branch tokens to the hypotheses. # Then call the model on the full sequence. # This is slow because the beginning of the sequence is re-processed each time. hypotheses_with_next_tokens = torch.cat([ torch.repeat_interleave(hypotheses, k, dim=0), branch_tokens.unsqueeze(1) ], dim=1) assert hypotheses_with_next_tokens.shape == (k, len(joined_ids) + 1) with torch.no_grad(): model_outs = model(hypotheses_with_next_tokens) # Grab the single most likely token from each of the k sequences next_token_logits = model_outs.logits[:, -1] vocab_size = model.config.vocab_size assert next_token_logits.shape == (k, vocab_size), f"{next_token_logits.shape=}, {k=}, {vocab_size=}" most_likely_token_ids = next_token_logits.argmax(dim=-1) # Stick them at the end of the branch tokens. assert most_likely_token_ids.shape == (k,) lookahead_sequences = torch.cat([ branch_tokens.unsqueeze(1), most_likely_token_ids.unsqueeze(1) ], dim=1) assert lookahead_sequences.shape == (k, 2) decoded_next_tokens = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) return decoded_next_tokens, next_token_logits def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens): device = model.device final_message_is_assistant = messages[-1]['role'] == "assistant" print(f"final_message_is_assistant: {final_message_is_assistant}") # if final_message_is_assistant: # tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, continue_final_message=True, return_tensors="pt").to(model.device) # else: # tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device) print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False)) # This fails with # RuntimeError: Index put requires the source and destination dtypes match, got BFloat16 for the destination and Float for the source. # generations = model.generate( # tokenized_chat, # num_return_sequences=n_branch_tokens, # num_beam_groups=n_branch_tokens, num_beams=n_branch_tokens, # do_sample=False, max_new_tokens=n_future_tokens, diversity_penalty=1e5, top_k=None, # return_dict_in_generate=True, output_scores=True) # Instead, we'll do this in two steps: # 1. Get the next token predictions for the k most likely continuations from transformers.cache_utils import DynamicCache past_key_values = DynamicCache() with torch.no_grad(): model_outs = model( tokenized_chat, past_key_values=past_key_values, output_hidden_states=True, use_cache=True, ) branch_tokens = model_outs.logits[0, -1].topk(n_branch_tokens).indices hypotheses = branch_tokens.unsqueeze(1) # Branch off the k most likely continuations past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device)) # 2. Generate the next n_future_tokens for each branch for i in range(n_future_tokens): position_id_for_final_token = tokenized_chat.shape[0] + i cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device) final_token_ids = hypotheses[:, -1:] with torch.no_grad(): model_outs = model( final_token_ids, past_key_values=past_key_values, output_hidden_states=True, use_cache=True, cache_position=cache_position ) # Grab the single most likely token from each of the k sequences next_token_logits = model_outs.logits[:, -1] vocab_size = model.config.vocab_size assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}" most_likely_token_ids = next_token_logits.argmax(dim=-1) hypotheses = torch.cat([ hypotheses, most_likely_token_ids.unsqueeze(1) ], dim=1) generated_docs = tokenizer.batch_decode(hypotheses, skip_special_tokens=True) return generated_docs