import pytest import torch from transformers import AutoModelForCausalLM, AutoTokenizer import custom_llm_inference from transformers.cache_utils import DynamicCache @pytest.fixture def model_and_tokenizer(): model_name = 'google/gemma-2-2b-it' tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.bos_token_id is None: tokenizer.bos_token_id = tokenizer.pad_token_id model = AutoModelForCausalLM.from_pretrained( model_name, device_map="cpu", torch_dtype=torch.float16 ) return model, tokenizer @pytest.fixture def sample_inputs(): doc = "The quick brown fox loves to jump over lazy dogs." prompt = "Rewrite this document to make more sense." doc_in_progress = "Sure, here's the document rewritten as requested:\n\nA fox," return doc, prompt, doc_in_progress def test_get_next_token_predictions(model_and_tokenizer, sample_inputs): model, tokenizer = model_and_tokenizer doc, prompt, doc_in_progress = sample_inputs predictions = custom_llm_inference.get_next_token_predictions_slow( model, tokenizer, doc, prompt, doc_in_progress=doc_in_progress, k=5 ) assert len(predictions) == 2 # Should return (token_texts, logits) assert len(predictions[0]) == 5 # Should return k=5 predictions assert predictions[1].shape[1] == model.config.vocab_size def test_get_tokenized_chat(model_and_tokenizer, sample_inputs): model, tokenizer = model_and_tokenizer doc, prompt, _ = sample_inputs tokenized_chat = custom_llm_inference.get_tokenized_chat(tokenizer, prompt, doc) assert isinstance(tokenized_chat, torch.Tensor) assert tokenized_chat.dim() == 1 assert tokenized_chat.dtype == torch.int64 def test_highlights(model_and_tokenizer, sample_inputs): model, tokenizer = model_and_tokenizer doc, prompt, updated_doc = sample_inputs highlights = custom_llm_inference.get_highlights_inner( model, tokenizer, doc, prompt, updated_doc=updated_doc, k=5 ) assert isinstance(highlights, list) assert len(highlights) > 0 for h in highlights: assert h['start'] >= 0 assert h['end'] >= h['start'] assert isinstance(h['token'], str) assert isinstance(h['token_loss'], float) assert isinstance(h['most_likely_token'], str) assert isinstance(h['topk_tokens'], list) def compare_lookahead_predictions(model, tokenizer, doc, prompt, doc_in_progress, k=5): """ Extracts and compares the next token predictions between the fast method and slow method. Returns the differences between the two approaches for analysis. """ # Get predictions from the fast method (using cache) fast_tokens, fast_logits = custom_llm_inference.get_next_token_predictions_inner( model, tokenizer, doc, prompt, doc_in_progress, k ) # Get predictions from the slow method (recomputing for each token) slow_tokens, slow_logits = custom_llm_inference.get_next_token_predictions_slow( model, tokenizer, doc, prompt, doc_in_progress, k ) # Compare the decoded tokens (this is what users will see) token_matches = [fast == slow for fast, slow in zip(fast_tokens, slow_tokens)] # Calculate the difference in logits for most likely next tokens fast_most_likely = fast_logits.argmax(dim=-1) slow_most_likely = slow_logits.argmax(dim=-1) logit_match = torch.eq(fast_most_likely, slow_most_likely).cpu().numpy() # Calculate numerical difference in logits logit_diff_norm = torch.linalg.vector_norm((fast_logits - slow_logits).to(torch.float32), dim=1).cpu().numpy() return { "fast_tokens": fast_tokens, "slow_tokens": slow_tokens, "token_matches": token_matches, "token_match_all": all(token_matches), "logit_match": logit_match, "logit_diff_norm": logit_diff_norm } def test_lookahead_token_consistency(model_and_tokenizer, sample_inputs): """ Test that demonstrates the potential issue with cache position indices when generating lookahead tokens. """ model, tokenizer = model_and_tokenizer doc, prompt, doc_in_progress = sample_inputs results = compare_lookahead_predictions(model, tokenizer, doc, prompt, doc_in_progress) # Check if the tokens are the same assert results["token_match_all"], ( f"Fast and slow methods produced different tokens.\n" f"Fast: {results['fast_tokens']}\n" f"Slow: {results['slow_tokens']}" ) # Check if the most likely next tokens based on logits are the same assert all(results["logit_match"]), ( f"Fast and slow methods predicted different most likely next tokens" ) # Check that the logit differences are minimal # This might fail if there's a bug in the cache position indices assert all(diff < 1e-4 for diff in results["logit_diff_norm"]), ( f"Significant difference in logits between fast and slow methods: {results['logit_diff_norm']}" )