Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import sys
|
7 |
+
from accelerate import infer_auto_device_map, init_empty_weights
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
13 |
+
)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Define the model name
|
17 |
+
model_name = "microsoft/phi-2"
|
18 |
+
|
19 |
+
try:
|
20 |
+
logger.info("Starting model initialization...")
|
21 |
+
|
22 |
+
# Check CUDA availability
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
logger.info(f"Using device: {device}")
|
25 |
+
|
26 |
+
# Configure PyTorch settings
|
27 |
+
if device == "cuda":
|
28 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
29 |
+
torch.backends.cudnn.allow_tf32 = True
|
30 |
+
|
31 |
+
# Load tokenizer
|
32 |
+
logger.info("Loading tokenizer...")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
+
model_name,
|
35 |
+
trust_remote_code=True
|
36 |
+
)
|
37 |
+
logger.info("Tokenizer loaded successfully")
|
38 |
+
|
39 |
+
# Load model
|
40 |
+
logger.info("Loading model...")
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
44 |
+
device_map="auto",
|
45 |
+
trust_remote_code=True
|
46 |
+
)
|
47 |
+
logger.info("Model loaded successfully")
|
48 |
+
|
49 |
+
# Create pipeline
|
50 |
+
logger.info("Creating generation pipeline...")
|
51 |
+
model_gen = pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=model,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
max_new_tokens=256,
|
56 |
+
do_sample=True,
|
57 |
+
temperature=0.7,
|
58 |
+
top_p=0.9,
|
59 |
+
repetition_penalty=1.1,
|
60 |
+
device_map="auto"
|
61 |
+
)
|
62 |
+
logger.info("Pipeline created successfully")
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error during initialization: {str(e)}")
|
66 |
+
raise
|
67 |
+
|
68 |
+
# Configure system message
|
69 |
+
system_message = {
|
70 |
+
"role": "system",
|
71 |
+
"content": """You are AQuaBot, an AI assistant aware of environmental impact.
|
72 |
+
You help users with any topic while raising awareness about water consumption
|
73 |
+
in AI. Did you know that training GPT-3 consumed 5.4 million liters of water,
|
74 |
+
equivalent to the daily consumption of a city of 10,000 people?"""
|
75 |
+
}
|
76 |
+
|
77 |
+
# Constants for water consumption calculation
|
78 |
+
WATER_PER_TOKEN = {
|
79 |
+
"input_training": 0.0000309,
|
80 |
+
"output_training": 0.0000309,
|
81 |
+
"input_inference": 0.05,
|
82 |
+
"output_inference": 0.05
|
83 |
+
}
|
84 |
+
|
85 |
+
# Initialize variables
|
86 |
+
messages = [system_message]
|
87 |
+
total_water_consumption = 0
|
88 |
+
|
89 |
+
def calculate_tokens(text):
|
90 |
+
try:
|
91 |
+
return len(tokenizer.encode(text))
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Error calculating tokens: {str(e)}")
|
94 |
+
return len(text.split()) + len(text) // 4 # Fallback to approximation
|
95 |
+
|
96 |
+
def calculate_water_consumption(text, is_input=True):
|
97 |
+
tokens = calculate_tokens(text)
|
98 |
+
if is_input:
|
99 |
+
return tokens * (WATER_PER_TOKEN["input_training"] + WATER_PER_TOKEN["input_inference"])
|
100 |
+
return tokens * (WATER_PER_TOKEN["output_training"] + WATER_PER_TOKEN["output_inference"])
|
101 |
+
|
102 |
+
@spaces.GPU(duration=60)
|
103 |
+
@torch.inference_mode()
|
104 |
+
def generate_response(user_input, chat_history):
|
105 |
+
try:
|
106 |
+
logger.info("Generating response for user input...")
|
107 |
+
global total_water_consumption, messages
|
108 |
+
|
109 |
+
# Calculate water consumption for input
|
110 |
+
input_water_consumption = calculate_water_consumption(user_input, True)
|
111 |
+
total_water_consumption += input_water_consumption
|
112 |
+
|
113 |
+
# Add user input to messages
|
114 |
+
messages.append({"role": "user", "content": user_input})
|
115 |
+
|
116 |
+
# Create prompt
|
117 |
+
prompt = ""
|
118 |
+
for m in messages:
|
119 |
+
if m["role"] == "system":
|
120 |
+
prompt += f"<START SYSTEM MESSAGE>\n{m['content']}\n<END SYSTEM MESSAGE>\n\n"
|
121 |
+
elif m["role"] == "user":
|
122 |
+
prompt += f"User: {m['content']}\n"
|
123 |
+
else:
|
124 |
+
prompt += f"Assistant: {m['content']}\n"
|
125 |
+
prompt += "Assistant:"
|
126 |
+
|
127 |
+
logger.info("Generating model response...")
|
128 |
+
outputs = model_gen(
|
129 |
+
prompt,
|
130 |
+
max_new_tokens=256,
|
131 |
+
return_full_text=False,
|
132 |
+
pad_token_id=tokenizer.eos_token_id,
|
133 |
+
)
|
134 |
+
logger.info("Model response generated successfully")
|
135 |
+
|
136 |
+
assistant_response = outputs[0]['generated_text'].strip()
|
137 |
+
|
138 |
+
# Calculate water consumption for output
|
139 |
+
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
140 |
+
total_water_consumption += output_water_consumption
|
141 |
+
|
142 |
+
# Add assistant's response to messages
|
143 |
+
messages.append({"role": "assistant", "content": assistant_response})
|
144 |
+
|
145 |
+
# Update chat history
|
146 |
+
chat_history.append((user_input, assistant_response))
|
147 |
+
|
148 |
+
# Prepare water consumption message
|
149 |
+
water_message = f"""
|
150 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
151 |
+
background-color: white; padding: 15px;
|
152 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
153 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
154 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
155 |
+
💧 {total_water_consumption:.4f} ml
|
156 |
+
</div>
|
157 |
+
<div style="color: #666; font-size: 14px;">
|
158 |
+
Water Consumed
|
159 |
+
</div>
|
160 |
+
</div>
|
161 |
+
"""
|
162 |
+
|
163 |
+
return chat_history, water_message
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"Error in generate_response: {str(e)}")
|
167 |
+
error_message = f"An error occurred: {str(e)}"
|
168 |
+
chat_history.append((user_input, error_message))
|
169 |
+
return chat_history, show_water
|
170 |
+
|
171 |
+
# Create Gradio interface
|
172 |
+
try:
|
173 |
+
logger.info("Creating Gradio interface...")
|
174 |
+
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
|
175 |
+
gr.HTML("""
|
176 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
177 |
+
<h1 style="color: #2d333a;">AQuaBot</h1>
|
178 |
+
<p style="color: #4a5568;">
|
179 |
+
Welcome to AQuaBot - An AI assistant that helps raise awareness about water
|
180 |
+
consumption in language models.
|
181 |
+
</p>
|
182 |
+
</div>
|
183 |
+
""")
|
184 |
+
|
185 |
+
chatbot = gr.Chatbot(type="messages")
|
186 |
+
message = gr.Textbox(
|
187 |
+
placeholder="Type your message here...",
|
188 |
+
show_label=False
|
189 |
+
)
|
190 |
+
show_water = gr.HTML(f"""
|
191 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
192 |
+
background-color: white; padding: 15px;
|
193 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
194 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
195 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
196 |
+
💧 0.0000 ml
|
197 |
+
</div>
|
198 |
+
<div style="color: #666; font-size: 14px;">
|
199 |
+
Water Consumed
|
200 |
+
</div>
|
201 |
+
</div>
|
202 |
+
""")
|
203 |
+
clear = gr.Button("Clear Chat")
|
204 |
+
|
205 |
+
# Add footer with citation and disclaimer
|
206 |
+
gr.HTML("""
|
207 |
+
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
|
208 |
+
background-color: #f8f9fa; border-radius: 10px;">
|
209 |
+
<div style="margin-bottom: 15px;">
|
210 |
+
<p style="color: #666; font-size: 14px; font-style: italic;">
|
211 |
+
Water consumption calculations are based on the study:<br>
|
212 |
+
Li, P. et al. (2023). Making AI Less Thirsty: Uncovering and Addressing the Secret Water
|
213 |
+
Footprint of AI Models. ArXiv Preprint,
|
214 |
+
<a href="https://arxiv.org/abs/2304.03271" target="_blank">https://arxiv.org/abs/2304.03271</a>
|
215 |
+
</p>
|
216 |
+
</div>
|
217 |
+
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
218 |
+
<p style="color: #666; font-size: 14px;">
|
219 |
+
<strong>Important note:</strong> This application uses Microsoft's Phi-2 model
|
220 |
+
instead of GPT-3 for availability and cost reasons. However,
|
221 |
+
the water consumption calculations per token (input/output) are based on the
|
222 |
+
conclusions from the cited paper.
|
223 |
+
</p>
|
224 |
+
</div>
|
225 |
+
</div>
|
226 |
+
""")
|
227 |
+
|
228 |
+
def submit(user_input, chat_history):
|
229 |
+
return generate_response(user_input, chat_history)
|
230 |
+
|
231 |
+
# Configure event handlers
|
232 |
+
message.submit(submit, [message, chatbot], [chatbot, show_water])
|
233 |
+
clear.click(
|
234 |
+
lambda: ([], f"""
|
235 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
236 |
+
background-color: white; padding: 15px;
|
237 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
238 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
239 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
240 |
+
💧 0.0000 ml
|
241 |
+
</div>
|
242 |
+
<div style="color: #666; font-size: 14px;">
|
243 |
+
Water Consumed
|
244 |
+
</div>
|
245 |
+
</div>
|
246 |
+
"""),
|
247 |
+
None,
|
248 |
+
[chatbot, show_water]
|
249 |
+
)
|
250 |
+
|
251 |
+
logger.info("Gradio interface created successfully")
|
252 |
+
|
253 |
+
# Launch the application
|
254 |
+
logger.info("Launching application...")
|
255 |
+
demo.launch()
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
logger.error(f"Error in Gradio interface creation: {str(e)}")
|
259 |
+
raise
|