Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ try:
|
|
36 |
)
|
37 |
logger.info("Tokenizer loaded successfully")
|
38 |
|
39 |
-
# Load model
|
40 |
logger.info("Loading model...")
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
model_name,
|
@@ -47,7 +47,7 @@ try:
|
|
47 |
model = model.to(device)
|
48 |
logger.info("Model loaded successfully")
|
49 |
|
50 |
-
# Create pipeline
|
51 |
logger.info("Creating generation pipeline...")
|
52 |
model_gen = pipeline(
|
53 |
"text-generation",
|
@@ -67,13 +67,10 @@ except Exception as e:
|
|
67 |
raise
|
68 |
|
69 |
# Configure system message
|
70 |
-
system_message =
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
in AI. Did you know that training GPT-3 consumed 5.4 million liters of water,
|
75 |
-
equivalent to the daily consumption of a city of 10,000 people?"""
|
76 |
-
}
|
77 |
|
78 |
# Constants for water consumption calculation
|
79 |
WATER_PER_TOKEN = {
|
@@ -84,7 +81,6 @@ WATER_PER_TOKEN = {
|
|
84 |
}
|
85 |
|
86 |
# Initialize variables
|
87 |
-
messages = [system_message]
|
88 |
total_water_consumption = 0
|
89 |
|
90 |
def calculate_tokens(text):
|
@@ -100,30 +96,27 @@ def calculate_water_consumption(text, is_input=True):
|
|
100 |
return tokens * (WATER_PER_TOKEN["input_training"] + WATER_PER_TOKEN["input_inference"])
|
101 |
return tokens * (WATER_PER_TOKEN["output_training"] + WATER_PER_TOKEN["output_inference"])
|
102 |
|
|
|
|
|
|
|
103 |
@spaces.GPU(duration=60)
|
104 |
@torch.inference_mode()
|
105 |
def generate_response(user_input, chat_history):
|
106 |
try:
|
107 |
logger.info("Generating response for user input...")
|
108 |
-
global total_water_consumption
|
109 |
|
110 |
# Calculate water consumption for input
|
111 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
112 |
total_water_consumption += input_water_consumption
|
113 |
|
114 |
-
# Add user input to messages
|
115 |
-
messages.append({"role": "user", "content": user_input})
|
116 |
-
|
117 |
# Create prompt
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
else:
|
125 |
-
prompt += f"Assistant: {m['content']}\n"
|
126 |
-
prompt += "Assistant:"
|
127 |
|
128 |
logger.info("Generating model response...")
|
129 |
outputs = model_gen(
|
@@ -140,11 +133,8 @@ def generate_response(user_input, chat_history):
|
|
140 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
141 |
total_water_consumption += output_water_consumption
|
142 |
|
143 |
-
#
|
144 |
-
|
145 |
-
|
146 |
-
# Update chat history
|
147 |
-
chat_history.append((user_input, assistant_response))
|
148 |
|
149 |
# Prepare water consumption message
|
150 |
water_message = f"""
|
@@ -166,7 +156,7 @@ def generate_response(user_input, chat_history):
|
|
166 |
except Exception as e:
|
167 |
logger.error(f"Error in generate_response: {str(e)}")
|
168 |
error_message = f"An error occurred: {str(e)}"
|
169 |
-
chat_history.append(
|
170 |
return chat_history, show_water
|
171 |
|
172 |
# Create Gradio interface
|
@@ -183,7 +173,7 @@ try:
|
|
183 |
</div>
|
184 |
""")
|
185 |
|
186 |
-
chatbot = gr.Chatbot(
|
187 |
message = gr.Textbox(
|
188 |
placeholder="Type your message here...",
|
189 |
show_label=False
|
|
|
36 |
)
|
37 |
logger.info("Tokenizer loaded successfully")
|
38 |
|
39 |
+
# Load model
|
40 |
logger.info("Loading model...")
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
model_name,
|
|
|
47 |
model = model.to(device)
|
48 |
logger.info("Model loaded successfully")
|
49 |
|
50 |
+
# Create pipeline
|
51 |
logger.info("Creating generation pipeline...")
|
52 |
model_gen = pipeline(
|
53 |
"text-generation",
|
|
|
67 |
raise
|
68 |
|
69 |
# Configure system message
|
70 |
+
system_message = """You are AQuaBot, an AI assistant aware of environmental impact.
|
71 |
+
You help users with any topic while raising awareness about water consumption
|
72 |
+
in AI. Did you know that training GPT-3 consumed 5.4 million liters of water,
|
73 |
+
equivalent to the daily consumption of a city of 10,000 people?"""
|
|
|
|
|
|
|
74 |
|
75 |
# Constants for water consumption calculation
|
76 |
WATER_PER_TOKEN = {
|
|
|
81 |
}
|
82 |
|
83 |
# Initialize variables
|
|
|
84 |
total_water_consumption = 0
|
85 |
|
86 |
def calculate_tokens(text):
|
|
|
96 |
return tokens * (WATER_PER_TOKEN["input_training"] + WATER_PER_TOKEN["input_inference"])
|
97 |
return tokens * (WATER_PER_TOKEN["output_training"] + WATER_PER_TOKEN["output_inference"])
|
98 |
|
99 |
+
def format_message(role, content):
|
100 |
+
return {"role": role, "content": content}
|
101 |
+
|
102 |
@spaces.GPU(duration=60)
|
103 |
@torch.inference_mode()
|
104 |
def generate_response(user_input, chat_history):
|
105 |
try:
|
106 |
logger.info("Generating response for user input...")
|
107 |
+
global total_water_consumption
|
108 |
|
109 |
# Calculate water consumption for input
|
110 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
111 |
total_water_consumption += input_water_consumption
|
112 |
|
|
|
|
|
|
|
113 |
# Create prompt
|
114 |
+
conversation_history = ""
|
115 |
+
if chat_history:
|
116 |
+
for message in chat_history:
|
117 |
+
conversation_history += f"User: {message[0]}\nAssistant: {message[1]}\n"
|
118 |
+
|
119 |
+
prompt = f"{system_message}\n\n{conversation_history}User: {user_input}\nAssistant:"
|
|
|
|
|
|
|
120 |
|
121 |
logger.info("Generating model response...")
|
122 |
outputs = model_gen(
|
|
|
133 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
134 |
total_water_consumption += output_water_consumption
|
135 |
|
136 |
+
# Update chat history with the new formatted messages
|
137 |
+
chat_history.append([user_input, assistant_response])
|
|
|
|
|
|
|
138 |
|
139 |
# Prepare water consumption message
|
140 |
water_message = f"""
|
|
|
156 |
except Exception as e:
|
157 |
logger.error(f"Error in generate_response: {str(e)}")
|
158 |
error_message = f"An error occurred: {str(e)}"
|
159 |
+
chat_history.append([user_input, error_message])
|
160 |
return chat_history, show_water
|
161 |
|
162 |
# Create Gradio interface
|
|
|
173 |
</div>
|
174 |
""")
|
175 |
|
176 |
+
chatbot = gr.Chatbot()
|
177 |
message = gr.Textbox(
|
178 |
placeholder="Type your message here...",
|
179 |
show_label=False
|