Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,11 +30,6 @@ try:
|
|
30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
logger.info(f"Using device: {device}")
|
32 |
|
33 |
-
# Configure PyTorch settings
|
34 |
-
if device == "cuda":
|
35 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
36 |
-
torch.backends.cudnn.allow_tf32 = True
|
37 |
-
|
38 |
# Load tokenizer
|
39 |
logger.info("Loading tokenizer...")
|
40 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -45,16 +40,15 @@ try:
|
|
45 |
tokenizer.pad_token = tokenizer.eos_token
|
46 |
logger.info("Tokenizer loaded successfully")
|
47 |
|
48 |
-
# Load model with
|
|
|
49 |
logger.info("Loading model...")
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
53 |
trust_remote_code=True,
|
54 |
token=hf_token,
|
55 |
-
device_map="auto"
|
56 |
-
max_memory={0: "12GiB"} if device == "cuda" else None,
|
57 |
-
load_in_8bit=True if device == "cuda" else False
|
58 |
)
|
59 |
logger.info("Model loaded successfully")
|
60 |
|
@@ -64,12 +58,11 @@ try:
|
|
64 |
"text-generation",
|
65 |
model=model,
|
66 |
tokenizer=tokenizer,
|
67 |
-
max_new_tokens=512,
|
68 |
do_sample=True,
|
69 |
-
temperature=0.8,
|
70 |
-
top_p=0.95,
|
71 |
-
|
72 |
-
repetition_penalty=1.2, # Increased to reduce repetition
|
73 |
device_map="auto"
|
74 |
)
|
75 |
logger.info("Pipeline created successfully")
|
@@ -78,15 +71,13 @@ except Exception as e:
|
|
78 |
logger.error(f"Error during initialization: {str(e)}")
|
79 |
raise
|
80 |
|
81 |
-
# Improved system message
|
82 |
system_message = """You are AQuaBot, an AI assistant focused on providing accurate and environmentally conscious information. Your responses should be:
|
83 |
1. Clear and concise yet informative
|
84 |
2. Based on verified information when discussing economic and financial topics
|
85 |
3. Balanced and well-reasoned
|
86 |
4. Mindful of environmental impact
|
87 |
-
5. Professional but conversational in tone
|
88 |
-
|
89 |
-
Maintain a helpful and knowledgeable demeanor while avoiding speculation. If you're unsure about something, acknowledge it openly."""
|
90 |
|
91 |
@spaces.GPU(duration=60)
|
92 |
@torch.inference_mode()
|
@@ -99,7 +90,7 @@ def generate_response(user_input, chat_history):
|
|
99 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
100 |
total_water_consumption += input_water_consumption
|
101 |
|
102 |
-
# Create a clean conversation history
|
103 |
conversation_history = ""
|
104 |
if chat_history:
|
105 |
for user_msg, assistant_msg in chat_history:
|
@@ -117,13 +108,9 @@ def generate_response(user_input, chat_history):
|
|
117 |
)
|
118 |
logger.info("Model response generated successfully")
|
119 |
|
120 |
-
# Clean up response
|
121 |
assistant_response = outputs[0]['generated_text'].strip()
|
122 |
assistant_response = assistant_response.split('User:')[0].split('Assistant:')[-1].strip()
|
123 |
-
|
124 |
-
# Add fact-check disclaimer for economic/financial responses
|
125 |
-
if any(keyword in user_input.lower() for keyword in ['invest', 'money', 'salary', 'cost', 'wage', 'economy']):
|
126 |
-
assistant_response += "\n\nNote: Financial information provided should be verified with current market data and professional advisors."
|
127 |
|
128 |
# Calculate water consumption for output
|
129 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
@@ -132,7 +119,7 @@ def generate_response(user_input, chat_history):
|
|
132 |
# Update chat history
|
133 |
chat_history.append([user_input, assistant_response])
|
134 |
|
135 |
-
#
|
136 |
water_message = f"""
|
137 |
<div style="position: fixed; top: 20px; right: 20px;
|
138 |
background-color: white; padding: 15px;
|
@@ -155,6 +142,7 @@ def generate_response(user_input, chat_history):
|
|
155 |
chat_history.append([user_input, error_message])
|
156 |
return chat_history, show_water
|
157 |
|
|
|
158 |
# Constants for water consumption calculation
|
159 |
WATER_PER_TOKEN = {
|
160 |
"input_training": 0.0000309,
|
|
|
30 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
logger.info(f"Using device: {device}")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
# Load tokenizer
|
34 |
logger.info("Loading tokenizer...")
|
35 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
40 |
tokenizer.pad_token = tokenizer.eos_token
|
41 |
logger.info("Tokenizer loaded successfully")
|
42 |
|
43 |
+
# Load model with basic configuration
|
44 |
+
# Accelerate helps with automatic device mapping for large models
|
45 |
logger.info("Loading model...")
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
model_name,
|
48 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
49 |
trust_remote_code=True,
|
50 |
token=hf_token,
|
51 |
+
device_map="auto" # Accelerate maneja autom谩ticamente la distribuci贸n del modelo
|
|
|
|
|
52 |
)
|
53 |
logger.info("Model loaded successfully")
|
54 |
|
|
|
58 |
"text-generation",
|
59 |
model=model,
|
60 |
tokenizer=tokenizer,
|
61 |
+
max_new_tokens=512,
|
62 |
do_sample=True,
|
63 |
+
temperature=0.8,
|
64 |
+
top_p=0.95,
|
65 |
+
repetition_penalty=1.2,
|
|
|
66 |
device_map="auto"
|
67 |
)
|
68 |
logger.info("Pipeline created successfully")
|
|
|
71 |
logger.error(f"Error during initialization: {str(e)}")
|
72 |
raise
|
73 |
|
74 |
+
# Improved system message
|
75 |
system_message = """You are AQuaBot, an AI assistant focused on providing accurate and environmentally conscious information. Your responses should be:
|
76 |
1. Clear and concise yet informative
|
77 |
2. Based on verified information when discussing economic and financial topics
|
78 |
3. Balanced and well-reasoned
|
79 |
4. Mindful of environmental impact
|
80 |
+
5. Professional but conversational in tone"""
|
|
|
|
|
81 |
|
82 |
@spaces.GPU(duration=60)
|
83 |
@torch.inference_mode()
|
|
|
90 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
91 |
total_water_consumption += input_water_consumption
|
92 |
|
93 |
+
# Create a clean conversation history
|
94 |
conversation_history = ""
|
95 |
if chat_history:
|
96 |
for user_msg, assistant_msg in chat_history:
|
|
|
108 |
)
|
109 |
logger.info("Model response generated successfully")
|
110 |
|
111 |
+
# Clean up response
|
112 |
assistant_response = outputs[0]['generated_text'].strip()
|
113 |
assistant_response = assistant_response.split('User:')[0].split('Assistant:')[-1].strip()
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Calculate water consumption for output
|
116 |
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
|
|
119 |
# Update chat history
|
120 |
chat_history.append([user_input, assistant_response])
|
121 |
|
122 |
+
# Water consumption message
|
123 |
water_message = f"""
|
124 |
<div style="position: fixed; top: 20px; right: 20px;
|
125 |
background-color: white; padding: 15px;
|
|
|
142 |
chat_history.append([user_input, error_message])
|
143 |
return chat_history, show_water
|
144 |
|
145 |
+
|
146 |
# Constants for water consumption calculation
|
147 |
WATER_PER_TOKEN = {
|
148 |
"input_training": 0.0000309,
|