Spaces:
Sleeping
Sleeping
Upload app (4).py
Browse files- app (4).py +342 -0
app (4).py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
from accelerate import infer_auto_device_map, init_empty_weights
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO,
|
13 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Get HuggingFace token from environment variable
|
18 |
+
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
|
19 |
+
if not hf_token:
|
20 |
+
logger.error("HUGGINGFACE_TOKEN environment variable not set")
|
21 |
+
raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")
|
22 |
+
|
23 |
+
# Define the model name
|
24 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
25 |
+
|
26 |
+
try:
|
27 |
+
logger.info("Starting model initialization...")
|
28 |
+
|
29 |
+
# Check CUDA availability
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
logger.info(f"Using device: {device}")
|
32 |
+
|
33 |
+
# Configure PyTorch settings
|
34 |
+
if device == "cuda":
|
35 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
36 |
+
torch.backends.cudnn.allow_tf32 = True
|
37 |
+
|
38 |
+
# Load tokenizer
|
39 |
+
logger.info("Loading tokenizer...")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
trust_remote_code=True,
|
43 |
+
token=hf_token
|
44 |
+
)
|
45 |
+
tokenizer.pad_token = tokenizer.eos_token
|
46 |
+
logger.info("Tokenizer loaded successfully")
|
47 |
+
|
48 |
+
# Load model with basic configuration
|
49 |
+
logger.info("Loading model...")
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_name,
|
52 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
53 |
+
trust_remote_code=True,
|
54 |
+
token=hf_token,
|
55 |
+
device_map="auto"
|
56 |
+
)
|
57 |
+
logger.info("Model loaded successfully")
|
58 |
+
|
59 |
+
# Create pipeline
|
60 |
+
logger.info("Creating generation pipeline...")
|
61 |
+
model_gen = pipeline(
|
62 |
+
"text-generation",
|
63 |
+
model=model,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
max_new_tokens=256,
|
66 |
+
do_sample=True,
|
67 |
+
temperature=0.7,
|
68 |
+
top_p=0.9,
|
69 |
+
repetition_penalty=1.1,
|
70 |
+
device_map="auto"
|
71 |
+
)
|
72 |
+
logger.info("Pipeline created successfully")
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Error during initialization: {str(e)}")
|
76 |
+
raise
|
77 |
+
|
78 |
+
# Configure system message
|
79 |
+
|
80 |
+
system_message = """You are a helpful AI assistant called AQuaBot. You provide direct, clear, and detailed answers to questions while being aware of environmental impact. Keep your responses natural and informative, but concise. Always provide context and explanations with your answers. Respond directly to questions without using any special tags or markers."""
|
81 |
+
|
82 |
+
@spaces.GPU(duration=60)
|
83 |
+
@torch.inference_mode()
|
84 |
+
def generate_response(user_input, chat_history):
|
85 |
+
try:
|
86 |
+
logger.info("Generating response for user input...")
|
87 |
+
global total_water_consumption
|
88 |
+
|
89 |
+
# Calculate water consumption for input
|
90 |
+
input_water_consumption = calculate_water_consumption(user_input, True)
|
91 |
+
total_water_consumption += input_water_consumption
|
92 |
+
|
93 |
+
# Create prompt with Llama 2 chat format
|
94 |
+
conversation_history = ""
|
95 |
+
if chat_history:
|
96 |
+
for message in chat_history:
|
97 |
+
# Remove any [INST] tags from the history
|
98 |
+
user_msg = message[0].replace("[INST]", "").replace("[/INST]", "").strip()
|
99 |
+
assistant_msg = message[1].replace("[INST]", "").replace("[/INST]", "").strip()
|
100 |
+
conversation_history += f"[INST] {user_msg} [/INST] {assistant_msg} "
|
101 |
+
|
102 |
+
prompt = f"<s>[INST] {system_message}\n\n{conversation_history}[INST] {user_input} [/INST]"
|
103 |
+
|
104 |
+
logger.info("Generating model response...")
|
105 |
+
outputs = model_gen(
|
106 |
+
prompt,
|
107 |
+
max_new_tokens=256,
|
108 |
+
return_full_text=False,
|
109 |
+
pad_token_id=tokenizer.eos_token_id,
|
110 |
+
do_sample=True,
|
111 |
+
temperature=0.7,
|
112 |
+
top_p=0.9,
|
113 |
+
repetition_penalty=1.1
|
114 |
+
)
|
115 |
+
logger.info("Model response generated successfully")
|
116 |
+
|
117 |
+
# Clean up the response by removing any [INST] tags and trimming
|
118 |
+
assistant_response = outputs[0]['generated_text'].strip()
|
119 |
+
assistant_response = assistant_response.replace("[INST]", "").replace("[/INST]", "").strip()
|
120 |
+
|
121 |
+
# If the response is too short, try to generate a more detailed one
|
122 |
+
if len(assistant_response.split()) < 10:
|
123 |
+
prompt += "\nPlease provide a more detailed answer with context and explanation."
|
124 |
+
outputs = model_gen(
|
125 |
+
prompt,
|
126 |
+
max_new_tokens=256,
|
127 |
+
return_full_text=False,
|
128 |
+
pad_token_id=tokenizer.eos_token_id,
|
129 |
+
do_sample=True,
|
130 |
+
temperature=0.7,
|
131 |
+
top_p=0.9,
|
132 |
+
repetition_penalty=1.1
|
133 |
+
)
|
134 |
+
assistant_response = outputs[0]['generated_text'].strip()
|
135 |
+
assistant_response = assistant_response.replace("[INST]", "").replace("[/INST]", "").strip()
|
136 |
+
|
137 |
+
# Calculate water consumption for output
|
138 |
+
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
139 |
+
total_water_consumption += output_water_consumption
|
140 |
+
|
141 |
+
# Update chat history with the cleaned messages
|
142 |
+
chat_history.append([user_input, assistant_response])
|
143 |
+
|
144 |
+
# Prepare water consumption message
|
145 |
+
water_message = f"""
|
146 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
147 |
+
background-color: white; padding: 15px;
|
148 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
149 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
150 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
151 |
+
💧 {total_water_consumption:.4f} ml
|
152 |
+
</div>
|
153 |
+
<div style="color: #666; font-size: 14px;">
|
154 |
+
Water Consumed
|
155 |
+
</div>
|
156 |
+
</div>
|
157 |
+
"""
|
158 |
+
|
159 |
+
return chat_history, water_message
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
logger.error(f"Error in generate_response: {str(e)}")
|
163 |
+
error_message = f"An error occurred: {str(e)}"
|
164 |
+
chat_history.append([user_input, error_message])
|
165 |
+
return chat_history, show_water
|
166 |
+
|
167 |
+
# Constants for water consumption calculation
|
168 |
+
WATER_PER_TOKEN = {
|
169 |
+
"input_training": 0.0000309,
|
170 |
+
"output_training": 0.0000309,
|
171 |
+
"input_inference": 0.05,
|
172 |
+
"output_inference": 0.05
|
173 |
+
}
|
174 |
+
|
175 |
+
# Initialize variables
|
176 |
+
total_water_consumption = 0
|
177 |
+
|
178 |
+
def calculate_tokens(text):
|
179 |
+
try:
|
180 |
+
return len(tokenizer.encode(text))
|
181 |
+
except Exception as e:
|
182 |
+
logger.error(f"Error calculating tokens: {str(e)}")
|
183 |
+
return len(text.split()) + len(text) // 4 # Fallback to approximation
|
184 |
+
|
185 |
+
def calculate_water_consumption(text, is_input=True):
|
186 |
+
tokens = calculate_tokens(text)
|
187 |
+
if is_input:
|
188 |
+
return tokens * (WATER_PER_TOKEN["input_training"] + WATER_PER_TOKEN["input_inference"])
|
189 |
+
return tokens * (WATER_PER_TOKEN["output_training"] + WATER_PER_TOKEN["output_inference"])
|
190 |
+
|
191 |
+
def format_message(role, content):
|
192 |
+
return {"role": role, "content": content}
|
193 |
+
|
194 |
+
@spaces.GPU(duration=60)
|
195 |
+
@torch.inference_mode()
|
196 |
+
def generate_response(user_input, chat_history):
|
197 |
+
try:
|
198 |
+
logger.info("Generating response for user input...")
|
199 |
+
global total_water_consumption
|
200 |
+
|
201 |
+
# Calculate water consumption for input
|
202 |
+
input_water_consumption = calculate_water_consumption(user_input, True)
|
203 |
+
total_water_consumption += input_water_consumption
|
204 |
+
|
205 |
+
# Create prompt with Llama 2 chat format
|
206 |
+
conversation_history = ""
|
207 |
+
if chat_history:
|
208 |
+
for message in chat_history:
|
209 |
+
conversation_history += f"[INST] {message[0]} [/INST] {message[1]} "
|
210 |
+
|
211 |
+
prompt = f"<s>[INST] {system_message}\n\n{conversation_history}[INST] {user_input} [/INST]"
|
212 |
+
|
213 |
+
logger.info("Generating model response...")
|
214 |
+
outputs = model_gen(
|
215 |
+
prompt,
|
216 |
+
max_new_tokens=256,
|
217 |
+
return_full_text=False,
|
218 |
+
pad_token_id=tokenizer.eos_token_id,
|
219 |
+
)
|
220 |
+
logger.info("Model response generated successfully")
|
221 |
+
|
222 |
+
assistant_response = outputs[0]['generated_text'].strip()
|
223 |
+
|
224 |
+
# Calculate water consumption for output
|
225 |
+
output_water_consumption = calculate_water_consumption(assistant_response, False)
|
226 |
+
total_water_consumption += output_water_consumption
|
227 |
+
|
228 |
+
# Update chat history with the new formatted messages
|
229 |
+
chat_history.append([user_input, assistant_response])
|
230 |
+
|
231 |
+
# Prepare water consumption message
|
232 |
+
water_message = f"""
|
233 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
234 |
+
background-color: white; padding: 15px;
|
235 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
236 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
237 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
238 |
+
💧 {total_water_consumption:.4f} ml
|
239 |
+
</div>
|
240 |
+
<div style="color: #666; font-size: 14px;">
|
241 |
+
Water Consumed
|
242 |
+
</div>
|
243 |
+
</div>
|
244 |
+
"""
|
245 |
+
|
246 |
+
return chat_history, water_message
|
247 |
+
|
248 |
+
except Exception as e:
|
249 |
+
logger.error(f"Error in generate_response: {str(e)}")
|
250 |
+
error_message = f"An error occurred: {str(e)}"
|
251 |
+
chat_history.append([user_input, error_message])
|
252 |
+
return chat_history, show_water
|
253 |
+
|
254 |
+
# Create Gradio interface
|
255 |
+
try:
|
256 |
+
logger.info("Creating Gradio interface...")
|
257 |
+
with gr.Blocks(css="div.gradio-container {background-color: #f0f2f6}") as demo:
|
258 |
+
gr.HTML("""
|
259 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
260 |
+
<h1 style="color: #2d333a;">AQuaBot</h1>
|
261 |
+
<p style="color: #4a5568;">
|
262 |
+
Welcome to AQuaBot - An AI assistant that helps raise awareness
|
263 |
+
about water consumption in language models.
|
264 |
+
</p>
|
265 |
+
</div>
|
266 |
+
""")
|
267 |
+
|
268 |
+
chatbot = gr.Chatbot()
|
269 |
+
message = gr.Textbox(
|
270 |
+
placeholder="Type your message here...",
|
271 |
+
show_label=False
|
272 |
+
)
|
273 |
+
show_water = gr.HTML(f"""
|
274 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
275 |
+
background-color: white; padding: 15px;
|
276 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
277 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
278 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
279 |
+
💧 0.0000 ml
|
280 |
+
</div>
|
281 |
+
<div style="color: #666; font-size: 14px;">
|
282 |
+
Water Consumed
|
283 |
+
</div>
|
284 |
+
</div>
|
285 |
+
""")
|
286 |
+
clear = gr.Button("Clear Chat")
|
287 |
+
|
288 |
+
# Add footer with citation and disclaimer
|
289 |
+
gr.HTML("""
|
290 |
+
<div style="text-align: center; max-width: 800px; margin: 20px auto; padding: 20px;
|
291 |
+
background-color: #f8f9fa; border-radius: 10px;">
|
292 |
+
<div style="margin-bottom: 15px;">
|
293 |
+
<p style="color: #666; font-size: 14px; font-style: italic;">
|
294 |
+
Water consumption calculations are based on the study:<br>
|
295 |
+
Li, P. et al. (2023). Making AI Less Thirsty: Uncovering and Addressing the Secret Water
|
296 |
+
Footprint of AI Models. ArXiv Preprint,
|
297 |
+
<a href="https://arxiv.org/abs/2304.03271" target="_blank">https://arxiv.org/abs/2304.03271</a>
|
298 |
+
</p>
|
299 |
+
</div>
|
300 |
+
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
301 |
+
<p style="color: #666; font-size: 14px;">
|
302 |
+
<strong>Important note:</strong> This application uses Meta Llama-2-7b model
|
303 |
+
instead of GPT-3 for availability and cost reasons. However,
|
304 |
+
the water consumption calculations per token (input/output) are based on the
|
305 |
+
conclusions from the cited paper.
|
306 |
+
</p>
|
307 |
+
</div>
|
308 |
+
</div>
|
309 |
+
""")
|
310 |
+
|
311 |
+
def submit(user_input, chat_history):
|
312 |
+
return generate_response(user_input, chat_history)
|
313 |
+
|
314 |
+
# Configure event handlers
|
315 |
+
message.submit(submit, [message, chatbot], [chatbot, show_water])
|
316 |
+
clear.click(
|
317 |
+
lambda: ([], f"""
|
318 |
+
<div style="position: fixed; top: 20px; right: 20px;
|
319 |
+
background-color: white; padding: 15px;
|
320 |
+
border: 2px solid #ff0000; border-radius: 10px;
|
321 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
322 |
+
<div style="color: #ff0000; font-size: 24px; font-weight: bold;">
|
323 |
+
💧 0.0000 ml
|
324 |
+
</div>
|
325 |
+
<div style="color: #666; font-size: 14px;">
|
326 |
+
Water Consumed
|
327 |
+
</div>
|
328 |
+
</div>
|
329 |
+
"""),
|
330 |
+
None,
|
331 |
+
[chatbot, show_water]
|
332 |
+
)
|
333 |
+
|
334 |
+
logger.info("Gradio interface created successfully")
|
335 |
+
|
336 |
+
# Launch the application
|
337 |
+
logger.info("Launching application...")
|
338 |
+
demo.launch()
|
339 |
+
|
340 |
+
except Exception as e:
|
341 |
+
logger.error(f"Error in Gradio interface creation: {str(e)}")
|
342 |
+
raise
|