Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ logging.basicConfig(
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Define the model name
|
17 |
-
model_name = "
|
18 |
|
19 |
try:
|
20 |
logger.info("Starting model initialization...")
|
@@ -32,19 +32,22 @@ try:
|
|
32 |
logger.info("Loading tokenizer...")
|
33 |
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
model_name,
|
35 |
-
trust_remote_code=True
|
|
|
36 |
)
|
|
|
37 |
logger.info("Tokenizer loaded successfully")
|
38 |
|
39 |
-
# Load model
|
40 |
logger.info("Loading model...")
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
model_name,
|
43 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
44 |
-
trust_remote_code=True
|
|
|
|
|
|
|
45 |
)
|
46 |
-
if device == "cuda":
|
47 |
-
model = model.to(device)
|
48 |
logger.info("Model loaded successfully")
|
49 |
|
50 |
# Create pipeline
|
@@ -58,7 +61,7 @@ try:
|
|
58 |
temperature=0.7,
|
59 |
top_p=0.9,
|
60 |
repetition_penalty=1.1,
|
61 |
-
|
62 |
)
|
63 |
logger.info("Pipeline created successfully")
|
64 |
|
@@ -69,8 +72,9 @@ except Exception as e:
|
|
69 |
# Configure system message
|
70 |
system_message = """You are AQuaBot, an AI assistant aware of environmental impact.
|
71 |
You help users with any topic while raising awareness about water consumption
|
72 |
-
in AI. Did you know that training
|
73 |
-
|
|
|
74 |
|
75 |
# Constants for water consumption calculation
|
76 |
WATER_PER_TOKEN = {
|
@@ -110,13 +114,13 @@ def generate_response(user_input, chat_history):
|
|
110 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
111 |
total_water_consumption += input_water_consumption
|
112 |
|
113 |
-
# Create prompt
|
114 |
conversation_history = ""
|
115 |
if chat_history:
|
116 |
for message in chat_history:
|
117 |
-
conversation_history += f"
|
118 |
|
119 |
-
prompt = f"{system_message}\n\n{conversation_history}
|
120 |
|
121 |
logger.info("Generating model response...")
|
122 |
outputs = model_gen(
|
@@ -167,8 +171,8 @@ try:
|
|
167 |
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
168 |
<h1 style="color: #2d333a;">AQuaBot</h1>
|
169 |
<p style="color: #4a5568;">
|
170 |
-
Welcome to AQuaBot - An AI assistant that helps raise awareness
|
171 |
-
consumption in language models.
|
172 |
</p>
|
173 |
</div>
|
174 |
""")
|
@@ -207,10 +211,9 @@ try:
|
|
207 |
</div>
|
208 |
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
209 |
<p style="color: #666; font-size: 14px;">
|
210 |
-
<strong>Important note:</strong> This application uses
|
211 |
-
|
212 |
-
|
213 |
-
conclusions from the cited paper.
|
214 |
</p>
|
215 |
</div>
|
216 |
</div>
|
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Define the model name
|
17 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
18 |
|
19 |
try:
|
20 |
logger.info("Starting model initialization...")
|
|
|
32 |
logger.info("Loading tokenizer...")
|
33 |
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
model_name,
|
35 |
+
trust_remote_code=True,
|
36 |
+
token=True # You'll need to set your HF token here
|
37 |
)
|
38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
39 |
logger.info("Tokenizer loaded successfully")
|
40 |
|
41 |
+
# Load model with device map
|
42 |
logger.info("Loading model...")
|
43 |
model = AutoModelForCausalLM.from_pretrained(
|
44 |
model_name,
|
45 |
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
46 |
+
trust_remote_code=True,
|
47 |
+
token=True, # You'll need to set your HF token here
|
48 |
+
device_map="auto",
|
49 |
+
load_in_8bit=True
|
50 |
)
|
|
|
|
|
51 |
logger.info("Model loaded successfully")
|
52 |
|
53 |
# Create pipeline
|
|
|
61 |
temperature=0.7,
|
62 |
top_p=0.9,
|
63 |
repetition_penalty=1.1,
|
64 |
+
device_map="auto"
|
65 |
)
|
66 |
logger.info("Pipeline created successfully")
|
67 |
|
|
|
72 |
# Configure system message
|
73 |
system_message = """You are AQuaBot, an AI assistant aware of environmental impact.
|
74 |
You help users with any topic while raising awareness about water consumption
|
75 |
+
in AI. Did you know that training large language models like Llama 2 can consume
|
76 |
+
substantial amounts of water due to the cooling requirements of data centers?
|
77 |
+
Let's work together while being mindful of our environmental impact."""
|
78 |
|
79 |
# Constants for water consumption calculation
|
80 |
WATER_PER_TOKEN = {
|
|
|
114 |
input_water_consumption = calculate_water_consumption(user_input, True)
|
115 |
total_water_consumption += input_water_consumption
|
116 |
|
117 |
+
# Create prompt with Llama 2 chat format
|
118 |
conversation_history = ""
|
119 |
if chat_history:
|
120 |
for message in chat_history:
|
121 |
+
conversation_history += f"[INST] {message[0]} [/INST] {message[1]} "
|
122 |
|
123 |
+
prompt = f"{system_message}\n\n{conversation_history}[INST] {user_input} [/INST]"
|
124 |
|
125 |
logger.info("Generating model response...")
|
126 |
outputs = model_gen(
|
|
|
171 |
<div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
|
172 |
<h1 style="color: #2d333a;">AQuaBot</h1>
|
173 |
<p style="color: #4a5568;">
|
174 |
+
Welcome to AQuaBot - An AI assistant powered by Llama 2 that helps raise awareness
|
175 |
+
about water consumption in language models.
|
176 |
</p>
|
177 |
</div>
|
178 |
""")
|
|
|
211 |
</div>
|
212 |
<div style="border-top: 1px solid #ddd; padding-top: 15px;">
|
213 |
<p style="color: #666; font-size: 14px;">
|
214 |
+
<strong>Important note:</strong> This application uses Meta's Llama 2 (7B parameters) model.
|
215 |
+
The water consumption calculations per token (input/output) are based on the
|
216 |
+
general conclusions from the cited paper about large language models.
|
|
|
217 |
</p>
|
218 |
</div>
|
219 |
</div>
|