Spaces:
Runtime error
Runtime error
Suck it bitches
Browse files
app.py
CHANGED
@@ -1,31 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
# Load
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
# Initialize
|
14 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
def answer_question(question):
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
fn=answer_question,
|
23 |
-
inputs="
|
24 |
outputs="text",
|
25 |
-
title="
|
26 |
-
description=
|
|
|
|
|
|
|
27 |
)
|
28 |
|
|
|
29 |
if __name__ == "__main__":
|
30 |
-
|
31 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
3 |
|
4 |
+
# 1. Choose a bilingual or multilingual QA model
|
5 |
+
MODEL_NAME = "mrm8488/xlm-roberta-large-finetuned-squadv2"
|
|
|
|
|
6 |
|
7 |
+
# 2. Load model + tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForQuestionAnswering.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
+
# 3. Initialize QA pipeline
|
12 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
13 |
|
14 |
+
# 4. Load or define custom knowledge base
|
15 |
+
with open("knowledge.txt", "r", encoding="utf-8") as f:
|
16 |
+
knowledge_text = f.read()
|
17 |
+
|
18 |
+
# 5. Define function to answer questions
|
19 |
def answer_question(question):
|
20 |
+
if not question.strip():
|
21 |
+
return "Please ask a valid question."
|
22 |
+
try:
|
23 |
+
result = qa_pipeline(question=question, context=knowledge_text)
|
24 |
+
return result["answer"]
|
25 |
+
except Exception as e:
|
26 |
+
return f"Error: {str(e)}"
|
27 |
|
28 |
+
# 6. Build Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
fn=answer_question,
|
31 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
32 |
outputs="text",
|
33 |
+
title="Budtender LLM (Bilingual QA)",
|
34 |
+
description=(
|
35 |
+
"A bilingual Q&A model trained on Spanish and English data. "
|
36 |
+
"Ask your cannabis-related questions here!"
|
37 |
+
)
|
38 |
)
|
39 |
|
40 |
+
# 7. Launch app
|
41 |
if __name__ == "__main__":
|
42 |
+
iface.launch()
|
|