CannaTech commited on
Commit
a500005
·
verified ·
1 Parent(s): 8ca07f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -60
app.py CHANGED
@@ -1,64 +1,42 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
3
+
4
+ # 1. Choose a bilingual or multilingual QA model
5
+ MODEL_NAME = "mrm8488/xlm-roberta-large-finetuned-squadv2"
6
+
7
+ # 2. Load model + tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
9
+ model = AutoModelForQuestionAnswering.from_pretrained(MODEL_NAME)
10
+
11
+ # 3. Initialize QA pipeline
12
+ qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
13
+
14
+ # 4. Load or define custom knowledge base
15
+ with open("knowledge.txt", "r", encoding="utf-8") as f:
16
+ knowledge_text = f.read()
17
+
18
+ # 5. Define function to answer questions
19
+ def answer_question(question):
20
+ if not question.strip():
21
+ return "Please ask a valid question."
22
+ try:
23
+ result = qa_pipeline(question=question, context=knowledge_text)
24
+ return result["answer"]
25
+ except Exception as e:
26
+ return f"Error: {str(e)}"
27
+
28
+ # 6. Build Gradio interface
29
+ iface = gr.Interface(
30
+ fn=answer_question,
31
+ inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
32
+ outputs="text",
33
+ title="Budtender LLM (Bilingual QA)",
34
+ description=(
35
+ "A bilingual Q&A model trained on Spanish and English data. "
36
+ "Ask your cannabis-related questions here!"
37
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  )
39
 
40
+ # 7. Launch app
41
  if __name__ == "__main__":
42
+ iface.launch()