Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
3 |
+
|
4 |
+
# 1. Choose a bilingual or multilingual QA model
|
5 |
+
MODEL_NAME = "mrm8488/xlm-roberta-large-finetuned-squadv2"
|
6 |
+
|
7 |
+
# 2. Load model + tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForQuestionAnswering.from_pretrained(MODEL_NAME)
|
10 |
+
|
11 |
+
# 3. Initialize QA pipeline
|
12 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
# 4. Load or define custom knowledge base
|
15 |
+
with open("knowledge.txt", "r", encoding="utf-8") as f:
|
16 |
+
knowledge_text = f.read()
|
17 |
+
|
18 |
+
# 5. Define function to answer questions
|
19 |
+
def answer_question(question):
|
20 |
+
if not question.strip():
|
21 |
+
return "Please ask a valid question."
|
22 |
+
try:
|
23 |
+
result = qa_pipeline(question=question, context=knowledge_text)
|
24 |
+
return result["answer"]
|
25 |
+
except Exception as e:
|
26 |
+
return f"Error: {str(e)}"
|
27 |
+
|
28 |
+
# 6. Build Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=answer_question,
|
31 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
|
32 |
+
outputs="text",
|
33 |
+
title="Budtender LLM (Bilingual QA)",
|
34 |
+
description=(
|
35 |
+
"A bilingual Q&A model trained on Spanish and English data. "
|
36 |
+
"Ask your cannabis-related questions here!"
|
37 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
|
40 |
+
# 7. Launch app
|
41 |
if __name__ == "__main__":
|
42 |
+
iface.launch()
|