import os import streamlit as st from huggingface_hub import HfApi, SpaceHardware # Set up Hugging Face API token and Space ID HF_TOKEN = os.getenv("HF_TOKEN") # Ensure your Hugging Face token is set as a secret TRAINING_SPACE_ID = "your_space_id_here" # Replace with your actual space ID # Initialize Hugging Face API api = HfApi(token=HF_TOKEN) # Function to check for a scheduled task (this is a placeholder for your actual task-checking logic) def get_task(): # You can implement logic here to check for scheduled tasks return None # For example, return None if no task is scheduled # Function to add a new task (you can implement this depending on your use case) def add_task(task): # Logic to add a new task st.write(f"Task '{task}' added!") # Function to mark the task as "DONE" (this is a placeholder) def mark_as_done(task): # Mark the task as done once it's completed st.write(f"Task '{task}' completed!") # Function to simulate training the model (replace with actual training logic) def train_and_upload(task): # Implement your model training logic here st.write(f"Training model with task: {task}") # Check if there’s an existing task task = get_task() if task is None: # Display Gradio interface to request a new task def gradio_fn(task): # On user request, add task and request hardware add_task(task) api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM) # Use Streamlit to request a task (Gradio interface or a simple button to simulate this) task_input = st.text_input("Enter task name", "") if st.button("Request Task"): gradio_fn(task_input) else: # If a task is available, check for hardware runtime = api.get_space_runtime(repo_id=TRAINING_SPACE_ID) if runtime.hardware == SpaceHardware.T4_MEDIUM: # Fine-tune model on GPU if available train_and_upload(task) # Mark task as "DONE" after training mark_as_done(task) # Reset to CPU hardware after training api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.CPU_BASIC) else: # If GPU hardware is not available, request it api.request_space_hardware(repo_id=TRAINING_SPACE_ID, hardware=SpaceHardware.T4_MEDIUM)