from gradio import components as gc import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer model_name = "Canstralian/CySec_Known_Exploit_Analyzer" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Define the function for text input processing def greet(text): # Tokenize and process the input text inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) # Extract the label with the highest score predicted_label = outputs.logits.argmax().item() return f"Greeting, {text}! Predicted label: {predicted_label}" # Create the interface iface = gr.Interface( fn=greet, inputs="text", outputs="text", title="Greeting App", description="Ask a user for their name and greet them." ) # Optional: define and add a sidebar if needed # Example sidebar component (replace with your intended content) sidebar = gr.Textbox(label="Sidebar Info") iface.add_component(sidebar, side="left") # Launch the Gradio app iface.launch()