Canstralian commited on
Commit
b1cdeed
·
verified ·
1 Parent(s): c7f124e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -43
app.py CHANGED
@@ -1,64 +1,60 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Canstralian/RedTeamAI")
8
 
9
 
10
  def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
 
 
26
  messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
 
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
 
5
+ # Initialize the Inference Client with the Canstralian/redteamai model
6
+ client = InferenceClient("Canstralian/redteamai")
 
 
7
 
8
 
9
  def respond(
10
+ message: str,
11
+ history: List[Tuple[str, str]],
12
+ system_message: str,
13
+ max_tokens: int,
14
+ temperature: float,
15
+ top_p: float,
16
  ):
17
+ # Start with the system message in the conversation history
18
  messages = [{"role": "system", "content": system_message}]
19
+
20
+ # Add the conversation history to the message
21
+ for user_message, assistant_reply in history:
22
+ if user_message:
23
+ messages.append({"role": "user", "content": user_message})
24
+ if assistant_reply:
25
+ messages.append({"role": "assistant", "content": assistant_reply})
26
+
27
+ # Add the current user message
28
  messages.append({"role": "user", "content": message})
29
 
30
+ # Create the API request
31
  response = ""
32
+ for result in client.chat_completion(
33
+ messages=messages,
 
34
  max_tokens=max_tokens,
 
35
  temperature=temperature,
36
  top_p=top_p,
37
+ stream=True # Enable streaming for real-time responses
38
  ):
39
+ # Extract and accumulate the response as it streams
40
+ token = result['choices'][0]['delta']['content']
41
  response += token
42
+ yield response # Yield response as it's generated
43
+
44
+ # Create the Gradio interface
45
+ demo = gr.Interface(
46
+ fn=respond,
47
+ inputs=[
48
+ gr.Textbox(label="User Message", placeholder="Enter your message here..."),
49
+ gr.State(default=[], label="Chat History"), # State for chat history
50
+ gr.Textbox(value="You are a friendly chatbot.", label="System Message"),
51
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
 
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
 
 
 
 
 
 
54
  ],
55
+ outputs=gr.Textbox(label="Assistant Response"),
56
+ live=True, # Enable real-time updating of the response
57
  )
58
 
 
59
  if __name__ == "__main__":
60
+ demo.launch()