File size: 2,281 Bytes
44e2068
 
 
805c0fb
fb55574
44e2068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805c0fb
 
 
 
 
 
 
 
 
 
 
 
 
44e2068
805c0fb
 
 
 
 
44e2068
805c0fb
fb55574
 
 
805c0fb
 
44e2068
805c0fb
 
44e2068
fb55574
805c0fb
44e2068
 
805c0fb
 
 
 
 
 
44e2068
 
fb55574
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
from huggingface_hub import InferenceClient

# Initialize the InferenceClient with the specified model
client = InferenceClient("WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    try:
        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message['choices'][0]['delta']['content']
            response += token
            yield response
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Define the system message with a cybersecurity focus
system_message = (
    "You are a cybersecurity expert chatbot, providing assistance on penetration testing, ransomware analysis, and code classification. "
    "Your responses should be concise, accurate, and tailored to cybersecurity professionals."
)

# Create the Gradio interface with dark/light mode toggle
demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(value=system_message, label="System Message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
        gr.Checkbox(label="Dark Mode", value=False),  # Dark mode toggle
    ],
    outputs=[gr.Textbox()],
    theme="dark",  # Default theme
)

def toggle_theme(dark_mode):
    """Toggle between dark and light themes based on user input."""
    return "dark" if dark_mode else "light"

# Update the theme based on the checkbox value
demo.change(fn=toggle_theme, inputs=[demo.inputs[4]], outputs=[demo])

if __name__ == "__main__":
    demo.launch()