Spaces:
Runtime error
Runtime error
File size: 1,699 Bytes
473cf5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""
Handles user input and generates a response using the Hugging Face model.
"""
try:
# Construct the conversation context
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Generate the response
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
token = message.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"Error: {str(e)}"
# Create the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System Message"),
gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (Nucleus Sampling)"),
]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |