Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
import requests
|
5 |
-
import pandas as pd
|
6 |
-
import numpy as np
|
7 |
-
from datasets import load_dataset
|
8 |
|
9 |
# Load the model and tokenizer from Hugging Face Hub
|
10 |
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed
|
@@ -23,26 +19,14 @@ def generate_text(instruction):
|
|
23 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
return output_text
|
25 |
|
26 |
-
# Function to load a sample dataset (this can be replaced with any dataset)
|
27 |
-
def load_sample_data():
|
28 |
-
# Load a sample dataset from Hugging Face Datasets
|
29 |
-
dataset = load_dataset("imdb", split="train[:5]")
|
30 |
-
df = pd.DataFrame(dataset)
|
31 |
-
return df.head() # Show a preview of the first 5 entries
|
32 |
-
|
33 |
# Gradio interface to interact with the text generation function
|
34 |
iface = gr.Interface(
|
35 |
fn=generate_text,
|
36 |
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."),
|
37 |
outputs="text",
|
38 |
-
live=True,
|
39 |
title="Pentest AI Text Generator",
|
40 |
description="Generate text using a fine-tuned model for pentesting-related queries."
|
41 |
)
|
42 |
|
43 |
-
#
|
44 |
-
data_viewer = gr.Interface(fn=load_sample_data, inputs=[], outputs="dataframe", title="Sample Dataset Viewer")
|
45 |
-
|
46 |
-
# Launch the interfaces
|
47 |
iface.launch()
|
48 |
-
data_viewer.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the model and tokenizer from Hugging Face Hub
|
6 |
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed
|
|
|
19 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
return output_text
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Gradio interface to interact with the text generation function
|
23 |
iface = gr.Interface(
|
24 |
fn=generate_text,
|
25 |
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."),
|
26 |
outputs="text",
|
|
|
27 |
title="Pentest AI Text Generator",
|
28 |
description="Generate text using a fine-tuned model for pentesting-related queries."
|
29 |
)
|
30 |
|
31 |
+
# Launch the interface
|
|
|
|
|
|
|
32 |
iface.launch()
|
|