Spaces:
Running
Running
import os | |
from typing import List, Tuple | |
import openai # Assuming you're using OpenAI's API (make sure to install the OpenAI package) | |
from flask import Flask, request, jsonify | |
# Initialize Flask app | |
app = Flask(__name__) | |
# Set the OpenAI API key | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Define a system message | |
SYSTEM_MESSAGE = "You are a helpful assistant." | |
# Function to generate AI response | |
def generate_response( | |
user_input: str, | |
history: List[Tuple[str, str]], | |
max_tokens: int = 150, | |
temperature: float = 0.7, | |
top_p: float = 1.0 | |
) -> str: | |
""" | |
Generates a response from the AI model. | |
Args: | |
user_input: The user's input message. | |
history: A list of tuples containing the conversation history | |
(user input, AI response). | |
max_tokens: The maximum number of tokens in the generated response. | |
temperature: Controls the randomness of the generated response. | |
top_p: Controls the nucleus sampling probability. | |
Returns: | |
str: The generated response from the AI model. | |
""" | |
try: | |
# Build the message list with system message and history | |
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] | |
# Iterate through the history list and format accordingly | |
for user_message, assistant_message in history: | |
messages.append({"role": "user", "content": user_message}) | |
messages.append({"role": "assistant", "content": assistant_message}) | |
# Add the current user input | |
messages.append({"role": "user", "content": user_input}) | |
# Generate response from the model | |
response = "" | |
for msg in openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", # You can use any model you prefer | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True | |
): | |
# Check if 'choices' is present and non-empty | |
if msg and 'choices' in msg and msg['choices']: | |
# Ensure the 'delta' and 'content' properties exist before using them | |
token = msg['choices'][0].get('delta', {}).get('content', '') | |
if token: | |
response += token | |
else: | |
# Handle unexpected response format or empty choices | |
print("Warning: Unexpected response format or empty 'choices'.") | |
break | |
return response or "Sorry, I couldn't generate a response. Please try again." | |
except Exception as e: | |
# Log the error for debugging purposes | |
print(f"An error occurred: {e}") | |
return "Error: An unexpected error occurred while processing your request." | |
# Route to handle user input and generate responses | |
def chat(): | |
try: | |
# Get user input from the request | |
user_input = request.json.get("user_input", "") | |
history = request.json.get("history", []) | |
# Generate the AI response | |
response = generate_response( | |
user_input=user_input, | |
history=history | |
) | |
# Return the response as JSON | |
return jsonify({"response": response}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == "__main__": | |
# Run the app | |
app.run(debug=True, host="0.0.0.0", port=5000) | |