sheonhan's picture
remove custom css
0cf2490
raw
history blame
14.2 kB
import json
import os
import shutil
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from dialogues import DialogueTemplate
from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
share_js)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
API_URL = os.environ.get("API_URL", None)
client = Client(
API_URL,
headers={"Authorization": f"Bearer {API_TOKEN}"},
)
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
if HF_TOKEN:
try:
shutil.rmtree("./data/")
except:
pass
repo = Repository(
local_dir="./data/", clone_from="trl-lib/star-chat-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
)
repo.git_pull()
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
f.write("\n")
repo.push_to_hub()
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def has_no_history(chatbot, history):
return not chatbot and not history
def generate(
# model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save=True,
):
# Don't return meaningless message when the input is empty
if not user_message:
return chatbot, history, user_message, ""
history.append(user_message)
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
if len(past_messages) < 1:
dialogue_template = DialogueTemplate(
system=system_message, messages=[{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
else:
dialogue_template = DialogueTemplate(
system=system_message, messages=past_messages + [{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
generate_kwargs = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=999,
seed=42,
stop_sequences=["<|end|>"],
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
if HF_TOKEN and do_save:
try:
print("Pushing prompt and completion to the Hub")
save_inputs_and_outputs(prompt, output, generate_kwargs)
except Exception as e:
print(e)
return chat, history, user_message, ""
examples = [
"How can I write a Python function to generate the nth Fibonacci number?",
"What's the capital city of Brunei?",
"How do I get the current date using shell commands? Explain how it works.",
"What's the meaning of life?",
"Write a function in Python to reverse words in a given string.",
]
# def regenerate(
# system_message,
# user_message,
# chatbot,
# history,
# temperature,
# top_k,
# top_p,
# max_new_tokens,
# repetition_penalty,
# do_save=True,
# ):
# # Do nothing if there's no history
# if has_no_history(chatbot, history):
# return (
# chatbot,
# history,
# user_message,
# "",
# )
# chatbot = chatbot[:-1]
# history = history[:-2]
# return generate(system_message, user_message, chatbot, history, temperature, top_k, top_p, max_new_tokens, repetition_penalty, do_save)
def clear_chat():
return [], []
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
title = """<h1 align="center">⭐ Chat with StarCoder Demo 💬</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
# css = share_btn_css + custom_css
with gr.Blocks(theme=theme, analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image("StarCoderBanner.png", elem_id="banner-image", show_label=False)
with gr.Column():
gr.Markdown(
"""
💻 This demo showcases an instruction fine-tuned model based on **[StarCoder](https://huggingface.co/bigcode/starcoder)**, a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
🤗 With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via [multi-query attention](https://arxiv.org/abs/1911.02150), **StarCoder** is currently the best open-source choice for code-based applications.
📝 For more details, check out our [blog post]().
⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1) are provided as educational tools to explain instruction fine-tuning; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1#bias-risks-and-limitations).
⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do NOT share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
"""
)
with gr.Row():
do_save = gr.Checkbox(
value=True,
label="Store data",
info="You agree to the storage of your prompt and generated text for research and development purposes:",
)
with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"):
system_message = gr.Textbox(
elem_id="system-message",
placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
show_label=False
)
with gr.Row():
with gr.Box():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
# regenerate_button = gr.Button("Regenerate", elem_id="send-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=100,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=384,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=0.0,
maximum=10,
step=0.1,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
history = gr.State([])
# To clear out "message" input textbox and use this to regenerate message
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
# regenerate_button.click(
# regenerate,
# inputs=[
# system_message,
# last_user_message,
# chatbot,
# history,
# temperature,
# top_k,
# top_p,
# max_new_tokens,
# repetition_penalty,
# do_save,
# ],
# outputs=[chatbot, history, last_user_message, user_message],
# )
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
# share_button.click(None, [], [], _js=share_js)
with gr.Row():
with gr.Column():
gr.Image("StarCoderBanner.png", elem_id="banner-image", show_label=False)
with gr.Column():
gr.Markdown(
"""
💻 This demo showcases an instruction fine-tuned model based on **[StarCoder](https://huggingface.co/bigcode/starcoder)**, a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
🤗 With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via [multi-query attention](https://arxiv.org/abs/1911.02150), **StarCoder** is currently the best open-source choice for code-based applications.
📝 For more details, check out our [blog post]().
⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1) are provided as educational tools to explain instruction fine-tuning; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1#bias-risks-and-limitations).
⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do NOT share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
"""
)
demo.queue(concurrency_count=16).launch(debug=True)