Canstralian commited on
Commit
918a703
·
verified ·
1 Parent(s): 8edf4f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -454
app.py CHANGED
@@ -1,456 +1,75 @@
1
- import datetime
2
- import os
3
- import random
4
- import re
5
- from io import StringIO
6
-
7
  import gradio as gr
8
- import pandas as pd
9
- from huggingface_hub import upload_file
10
- from text_generation import Client
11
-
12
- from dialogues import DialogueTemplate
13
- from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
14
- share_js)
15
-
16
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
17
- API_TOKEN = os.environ.get("API_TOKEN", None)
18
- DIALOGUES_DATASET = "HuggingFaceH4/starchat_playground_dialogues"
19
-
20
- model2endpoint = {
21
- "starchat-alpha": "https://api-inference.huggingface.co/models/HuggingFaceH4/starcoderbase-finetuned-oasst1",
22
- "starchat-beta": "https://api-inference.huggingface.co/models/HuggingFaceH4/starchat-beta",
23
- }
24
- model_names = list(model2endpoint.keys())
25
-
26
-
27
- def randomize_seed_generator():
28
- seed = random.randint(0, 1000000)
29
- return seed
30
-
31
-
32
- # def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs, model):
33
- # buffer = StringIO()
34
- # timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
35
- # file_name = f"prompts_{timestamp}.jsonl"
36
- # data = {"model": model, "inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}
37
- # pd.DataFrame([data]).to_json(buffer, orient="records", lines=True)
38
-
39
- # # Push to Hub
40
- # upload_file(
41
- # path_in_repo=f"{now.date()}/{now.hour}/{file_name}",
42
- # path_or_fileobj=buffer.getvalue().encode(),
43
- # repo_id=DIALOGUES_DATASET,
44
- # token=HF_TOKEN,
45
- # repo_type="dataset",
46
- # )
47
-
48
- # # Clean and rerun
49
- # buffer.close()
50
-
51
-
52
- def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
53
- past = []
54
- for data in chatbot:
55
- user_data, model_data = data
56
-
57
- if not user_data.startswith(user_name):
58
- user_data = user_name + user_data
59
- if not model_data.startswith(sep + assistant_name):
60
- model_data = sep + assistant_name + model_data
61
-
62
- past.append(user_data + model_data.rstrip() + sep)
63
-
64
- if not inputs.startswith(user_name):
65
- inputs = user_name + inputs
66
-
67
- total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
68
-
69
- return total_inputs
70
-
71
-
72
- def wrap_html_code(text):
73
- pattern = r"<.*?>"
74
- matches = re.findall(pattern, text)
75
- if len(matches) > 0:
76
- return f"```{text}```"
77
- else:
78
- return text
79
-
80
-
81
- def has_no_history(chatbot, history):
82
- return not chatbot and not history
83
-
84
-
85
- def generate(
86
- RETRY_FLAG,
87
- model_name,
88
- system_message,
89
- user_message,
90
- chatbot,
91
- history,
92
- temperature,
93
- top_k,
94
- top_p,
95
- max_new_tokens,
96
- repetition_penalty,
97
- # do_save=True,
98
- ):
99
- client = Client(
100
- model2endpoint[model_name],
101
- headers={"Authorization": f"Bearer {API_TOKEN}"},
102
- timeout=60,
103
- )
104
- # Don't return meaningless message when the input is empty
105
- if not user_message:
106
- print("Empty input")
107
-
108
- if not RETRY_FLAG:
109
- history.append(user_message)
110
- seed = 42
111
- else:
112
- seed = randomize_seed_generator()
113
-
114
- past_messages = []
115
- for data in chatbot:
116
- user_data, model_data = data
117
-
118
- past_messages.extend(
119
- [{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
120
- )
121
-
122
- if len(past_messages) < 1:
123
- dialogue_template = DialogueTemplate(
124
- system=system_message, messages=[{"role": "user", "content": user_message}]
125
- )
126
- prompt = dialogue_template.get_inference_prompt()
127
- else:
128
- dialogue_template = DialogueTemplate(
129
- system=system_message, messages=past_messages + [{"role": "user", "content": user_message}]
130
- )
131
- prompt = dialogue_template.get_inference_prompt()
132
-
133
- generate_kwargs = {
134
- "temperature": temperature,
135
- "top_k": top_k,
136
- "top_p": top_p,
137
- "max_new_tokens": max_new_tokens,
138
- }
139
-
140
- temperature = float(temperature)
141
- if temperature < 1e-2:
142
- temperature = 1e-2
143
- top_p = float(top_p)
144
-
145
- generate_kwargs = dict(
146
- temperature=temperature,
147
- max_new_tokens=max_new_tokens,
148
- top_p=top_p,
149
- repetition_penalty=repetition_penalty,
150
- do_sample=True,
151
- truncate=4096,
152
- seed=seed,
153
- stop_sequences=["<|end|>"],
154
- )
155
-
156
- stream = client.generate_stream(
157
- prompt,
158
- **generate_kwargs,
159
- )
160
-
161
- output = ""
162
- for idx, response in enumerate(stream):
163
- if response.token.special:
164
- continue
165
- output += response.token.text
166
- if idx == 0:
167
- history.append(" " + output)
168
- else:
169
- history[-1] = output
170
-
171
- chat = [
172
- (wrap_html_code(history[i].strip()), wrap_html_code(history[i + 1].strip()))
173
- for i in range(0, len(history) - 1, 2)
174
- ]
175
-
176
- # chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
177
-
178
- yield chat, history, user_message, ""
179
-
180
- # if HF_TOKEN and do_save:
181
- # try:
182
- # now = datetime.datetime.now()
183
- # current_time = now.strftime("%Y-%m-%d %H:%M:%S")
184
- # print(f"[{current_time}] Pushing prompt and completion to the Hub")
185
- # save_inputs_and_outputs(now, prompt, output, generate_kwargs, model_name)
186
- # except Exception as e:
187
- # print(e)
188
-
189
- return chat, history, user_message, ""
190
-
191
-
192
- examples = [
193
- "How can I write a Python function to generate the nth Fibonacci number?",
194
- "How do I get the current date using shell commands? Explain how it works.",
195
- "What's the meaning of life?",
196
- "Write a function in Javascript to reverse words in a given string.",
197
- "Give the following data {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'], 'Age':[20, 21, 19, 18], 'Height' : [6.1, 5.9, 6.0, 6.1]}. Can you plot one graph with two subplots as columns. The first is a bar graph showing the height of each person. The second is a bargraph showing the age of each person? Draw the graph in seaborn talk mode.",
198
- "Create a regex to extract dates from logs",
199
- "How to decode JSON into a typescript object",
200
- "Write a list into a jsonlines file and save locally",
201
- ]
202
-
203
-
204
- def clear_chat():
205
- return [], []
206
-
207
-
208
- def delete_last_turn(chat, history):
209
- if chat and history:
210
- chat.pop(-1)
211
- history.pop(-1)
212
- history.pop(-1)
213
- return chat, history
214
-
215
-
216
- def process_example(args):
217
- for [x, y] in generate(args):
218
- pass
219
- return [x, y]
220
-
221
-
222
- # Regenerate response
223
- def retry_last_answer(
224
- selected_model,
225
- system_message,
226
- user_message,
227
- chat,
228
- history,
229
- temperature,
230
- top_k,
231
- top_p,
232
- max_new_tokens,
233
- repetition_penalty,
234
- # do_save,
235
- ):
236
- if chat and history:
237
- # Removing the previous conversation from chat
238
- chat.pop(-1)
239
- # Removing bot response from the history
240
- history.pop(-1)
241
- # Setting up a flag to capture a retry
242
- RETRY_FLAG = True
243
- # Getting last message from user
244
- user_message = history[-1]
245
-
246
- yield from generate(
247
- RETRY_FLAG,
248
- selected_model,
249
- system_message,
250
- user_message,
251
- chat,
252
- history,
253
- temperature,
254
- top_k,
255
- top_p,
256
- max_new_tokens,
257
- repetition_penalty,
258
- # do_save,
259
- )
260
-
261
-
262
- title = """<h1 align="center">⭐ StarChat Playground 💬</h1>"""
263
- custom_css = """
264
- #banner-image {
265
- display: block;
266
- margin-left: auto;
267
- margin-right: auto;
268
- }
269
-
270
- #chat-message {
271
- font-size: 14px;
272
- min-height: 300px;
273
- }
274
- """
275
-
276
- with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
277
- gr.HTML(title)
278
-
279
- with gr.Row():
280
- with gr.Column():
281
- gr.Image("thumbnail.png", elem_id="banner-image", show_label=False)
282
- with gr.Column():
283
- gr.Markdown(
284
- """
285
- 💻 This demo showcases a series of **[StarChat](https://huggingface.co/models?search=huggingfaceh4/starchat)** language models, which are fine-tuned versions of the StarCoder family to act as helpful coding assistants. The base model has 16B parameters and was pretrained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
286
-
287
- 📝 For more details, check out our [blog post](https://huggingface.co/blog/starchat-alpha).
288
-
289
- ⚠️ **Intended Use**: this app and its [supporting models](https://huggingface.co/models?search=huggingfaceh4/starchat) are provided as educational tools to explain large language model fine-tuning; not to serve as replacement for human expertise.
290
-
291
- ⚠️ **Known Failure Modes**: the alpha and beta version of **StarChat** have not been aligned to human preferences with techniques like RLHF, so they can produce problematic outputs (especially when prompted to do so). Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect. For example, it may produce code that does not compile or that produces incorrect results. It may also produce code that is vulnerable to security exploits. We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking. For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starchat-alpha#bias-risks-and-limitations).
292
-
293
- ⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the models. Do **NOT** share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
294
  """
295
- )
296
-
297
- # with gr.Row():
298
- # do_save = gr.Checkbox(
299
- # value=True,
300
- # label="Store data",
301
- # info="You agree to the storage of your prompt and generated text for research and development purposes:",
302
- # )
303
-
304
- with gr.Row():
305
- selected_model = gr.Radio(choices=model_names, value=model_names[1], label="Select a model")
306
-
307
- with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"):
308
- system_message = gr.Textbox(
309
- elem_id="system-message",
310
- placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
311
- show_label=False,
312
- )
313
- with gr.Row():
314
- with gr.Box():
315
- output = gr.Markdown()
316
- chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
317
-
318
- with gr.Row():
319
- with gr.Column(scale=3):
320
- user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
321
- with gr.Row():
322
- send_button = gr.Button("Send", elem_id="send-btn", visible=True)
323
-
324
- regenerate_button = gr.Button("Regenerate", elem_id="retry-btn", visible=True)
325
-
326
- delete_turn_button = gr.Button("Delete last turn", elem_id="delete-btn", visible=True)
327
-
328
- clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
329
-
330
- with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
331
- temperature = gr.Slider(
332
- label="Temperature",
333
- value=0.2,
334
- minimum=0.0,
335
- maximum=1.0,
336
- step=0.1,
337
- interactive=True,
338
- info="Higher values produce more diverse outputs",
339
- )
340
- top_k = gr.Slider(
341
- label="Top-k",
342
- value=50,
343
- minimum=0.0,
344
- maximum=100,
345
- step=1,
346
- interactive=True,
347
- info="Sample from a shortlist of top-k tokens",
348
- )
349
- top_p = gr.Slider(
350
- label="Top-p (nucleus sampling)",
351
- value=0.95,
352
- minimum=0.0,
353
- maximum=1,
354
- step=0.05,
355
- interactive=True,
356
- info="Higher values sample more low-probability tokens",
357
- )
358
- max_new_tokens = gr.Slider(
359
- label="Max new tokens",
360
- value=512,
361
- minimum=0,
362
- maximum=1024,
363
- step=4,
364
- interactive=True,
365
- info="The maximum numbers of new tokens",
366
- )
367
- repetition_penalty = gr.Slider(
368
- label="Repetition Penalty",
369
- value=1.2,
370
- minimum=0.0,
371
- maximum=10,
372
- step=0.1,
373
- interactive=True,
374
- info="The parameter for repetition penalty. 1.0 means no penalty.",
375
- )
376
- # with gr.Group(elem_id="share-btn-container"):
377
- # community_icon = gr.HTML(community_icon_html, visible=True)
378
- # loading_icon = gr.HTML(loading_icon_html, visible=True)
379
- # share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
380
- with gr.Row():
381
- gr.Examples(
382
- examples=examples,
383
- inputs=[user_message],
384
- cache_examples=False,
385
- fn=process_example,
386
- outputs=[output],
387
- )
388
-
389
- history = gr.State([])
390
- RETRY_FLAG = gr.Checkbox(value=False, visible=False)
391
-
392
- # To clear out "message" input textbox and use this to regenerate message
393
- last_user_message = gr.State("")
394
-
395
- user_message.submit(
396
- generate,
397
- inputs=[
398
- RETRY_FLAG,
399
- selected_model,
400
- system_message,
401
- user_message,
402
- chatbot,
403
- history,
404
- temperature,
405
- top_k,
406
- top_p,
407
- max_new_tokens,
408
- repetition_penalty,
409
- # do_save,
410
- ],
411
- outputs=[chatbot, history, last_user_message, user_message],
412
- )
413
-
414
- send_button.click(
415
- generate,
416
- inputs=[
417
- RETRY_FLAG,
418
- selected_model,
419
- system_message,
420
- user_message,
421
- chatbot,
422
- history,
423
- temperature,
424
- top_k,
425
- top_p,
426
- max_new_tokens,
427
- repetition_penalty,
428
- # do_save,
429
- ],
430
- outputs=[chatbot, history, last_user_message, user_message],
431
- )
432
-
433
- regenerate_button.click(
434
- retry_last_answer,
435
- inputs=[
436
- selected_model,
437
- system_message,
438
- user_message,
439
- chatbot,
440
- history,
441
- temperature,
442
- top_k,
443
- top_p,
444
- max_new_tokens,
445
- repetition_penalty,
446
- # do_save,
447
- ],
448
- outputs=[chatbot, history, last_user_message, user_message],
449
- )
450
-
451
- delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
452
- clear_chat_button.click(clear_chat, outputs=[chatbot, history])
453
- selected_model.change(clear_chat, outputs=[chatbot, history])
454
- # share_button.click(None, [], [], _js=share_js)
455
-
456
- demo.queue(concurrency_count=16).launch(debug=True)
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+
5
+ # Initialize the InferenceClient with the model you want to use
6
+ client = InferenceClient("microsoft/phi-4")
7
+
8
+ # Define the system message (non-editable)
9
+ SYSTEM_MESSAGE = "You're an advanced AI assistant designed to engage in friendly and informative conversations. Your role is to respond to user queries with helpful, clear, and concise answers, while maintaining a conversational tone. You can provide advice, explanations, and solutions based on user input."
10
+
11
+ def generate_response(
12
+ user_input: str,
13
+ history: List[Tuple[str, str]],
14
+ max_tokens: int,
15
+ temperature: float,
16
+ top_p: float
17
+ ) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  """
19
+ Generates a response from the AI model.
20
+
21
+ Args:
22
+ user_input: The user's input message.
23
+ history: A list of tuples containing the conversation history
24
+ (user input, AI response).
25
+ max_tokens: The maximum number of tokens in the generated response.
26
+ temperature: Controls the randomness of the generated response.
27
+ top_p: Controls the nucleus sampling probability.
28
+
29
+ Returns:
30
+ str: The generated response from the AI model.
31
+ """
32
+ try:
33
+ # Build the message list with system message and history
34
+ messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
35
+ messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": val}
36
+ for i, val in enumerate(sum(history, ()))])
37
+ messages.append({"role": "user", "content": user_input})
38
+
39
+ # Generate response from the model
40
+ response = ""
41
+ for msg in client.chat_completion(
42
+ messages,
43
+ max_tokens=max_tokens,
44
+ stream=True,
45
+ temperature=temperature,
46
+ top_p=top_p,
47
+ ):
48
+ if 'choices' in msg and len(msg['choices']) > 0:
49
+ token = msg['choices'][0].get('delta', {}).get('content', '')
50
+ if token:
51
+ response += token
52
+ return response
53
+
54
+ except Exception as e:
55
+ print(f"An error occurred: {e}")
56
+ return "Error: An unexpected error occurred while processing your request."
57
+
58
+ # Define the Gradio Interface
59
+ iface = gr.Interface(
60
+ fn=generate_response,
61
+ inputs=[
62
+ gr.Textbox(lines=2, label="Your Message"),
63
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
64
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
65
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
66
+ gr.Chatbot(label="Conversation")
67
+ ],
68
+ outputs=[gr.Textbox(label="AI Response")],
69
+ title="Chat with AI",
70
+ description="Interact with an AI assistant that engages in friendly and informative conversations.",
71
+ )
72
+
73
+ # Launch the interface
74
+ if __name__ == "__main__":
75
+ iface.launch()