import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple # Initialize the InferenceClient with the model you want to use client = InferenceClient("microsoft/phi-4") # Define the system message (non-editable) SYSTEM_MESSAGE = "You're an advanced AI assistant designed to engage in friendly and informative conversations. Your role is to respond to user queries with helpful, clear, and concise answers, while maintaining a conversational tone. You can provide advice, explanations, and solutions based on user input." def generate_response( user_input: str, history: List[Tuple[str, str]], max_tokens: int, temperature: float, top_p: float ) -> str: """ Generates a response from the AI model. Args: user_input: The user's input message. history: A list of tuples containing the conversation history (user input, AI response). max_tokens: The maximum number of tokens in the generated response. temperature: Controls the randomness of the generated response. top_p: Controls the nucleus sampling probability. Returns: str: The generated response from the AI model. """ try: # Build the message list with system message and history messages = [{"role": "system", "content": SYSTEM_MESSAGE}] messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": val} for i, val in enumerate(sum(history, ()))]) messages.append({"role": "user", "content": user_input}) # Generate response from the model response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if 'choices' in msg and len(msg['choices']) > 0: token = msg['choices'][0].get('delta', {}).get('content', '') if token: response += token return response except Exception as e: print(f"An error occurred: {e}") return "Error: An unexpected error occurred while processing your request." # Define the Gradio Interface iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(lines=2, label="Your Message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), gr.Chatbot(label="Conversation") ], outputs=[gr.Textbox(label="AI Response")], title="Chat with AI", description="Interact with an AI assistant that engages in friendly and informative conversations.", ) # Launch the interface if __name__ == "__main__": iface.launch()