from typing import List, Tuple def generate_response( user_input: str, history: List[Tuple[str, str]], max_tokens: int, temperature: float, top_p: float ) -> str: """ Generates a response from the AI model. Args: user_input: The user's input message. history: A list of tuples containing the conversation history (user input, AI response). max_tokens: The maximum number of tokens in the generated response. temperature: Controls the randomness of the generated response. top_p: Controls the nucleus sampling probability. Returns: str: The generated response from the AI model. """ try: # Build the message list with system message and history messages = [{"role": "system", "content": SYSTEM_MESSAGE}] # Iterate through the history list and format accordingly for user_message, assistant_message in history: messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": assistant_message}) # Add the current user input messages.append({"role": "user", "content": user_input}) # Generate response from the model response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): # Check if 'choices' is present and non-empty if msg and 'choices' in msg and msg['choices']: # Ensure the 'delta' and 'content' properties exist before using them token = msg['choices'][0].get('delta', {}).get('content', '') if token: response += token else: # Handle unexpected response format or empty choices print("Warning: Unexpected response format or empty 'choices'.") break return response or "Sorry, I couldn't generate a response. Please try again." except Exception as e: # Log the error for debugging purposes print(f"An error occurred: {e}") return "Error: An unexpected error occurred while processing your request."