Update README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,83 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: purple
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.41.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ML Pipeline for Cybersecurity Purple Teaming π‘οΈ
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: A Streamlit-based machine learning pipeline platform
|
12 |
+
---
|
13 |
+
|
14 |
+
# ML Pipeline for Cybersecurity Purple Teaming π‘οΈ
|
15 |
+
|
16 |
+
A scalable Streamlit-based machine learning pipeline platform specialized for cybersecurity purple-teaming, enabling advanced data processing and model training.
|
17 |
+
|
18 |
+
## Features π
|
19 |
+
|
20 |
+
- **Distributed Data Processing**: Leverage Dask for handling large-scale datasets
|
21 |
+
- **Interactive ML Pipeline**: Build and customize machine learning workflows
|
22 |
+
- **Real-time Visualization**: Monitor model performance and data insights
|
23 |
+
- **Cybersecurity Focus**: Tailored for purple team operations and security analytics
|
24 |
+
|
25 |
+
## Tech Stack π»
|
26 |
+
|
27 |
+
- **Dask**: Distributed data processing
|
28 |
+
- **Scikit-learn**: ML model training and evaluation
|
29 |
+
- **Streamlit**: Interactive web interface
|
30 |
+
- **Pandas/NumPy**: Data manipulation and analysis
|
31 |
+
- **Matplotlib/Seaborn**: Data visualization
|
32 |
+
|
33 |
+
## Getting Started π
|
34 |
+
|
35 |
+
1. **Clone the repository**
|
36 |
+
```bash
|
37 |
+
git clone https://github.com/yourusername/cybersec-ml-pipeline.git
|
38 |
+
cd cybersec-ml-pipeline
|
39 |
+
```
|
40 |
+
|
41 |
+
2. **Install dependencies**
|
42 |
+
```bash
|
43 |
+
pip install -r requirements.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
3. **Run the application**
|
47 |
+
```bash
|
48 |
+
streamlit run app.py
|
49 |
+
```
|
50 |
+
|
51 |
+
## Usage Guide π
|
52 |
+
|
53 |
+
1. **Data Upload**
|
54 |
+
- Support for CSV and JSON formats
|
55 |
+
- Automatic handling of large datasets using Dask
|
56 |
+
|
57 |
+
2. **Pipeline Configuration**
|
58 |
+
- Choose preprocessing steps
|
59 |
+
- Configure model parameters
|
60 |
+
- Select features for training
|
61 |
+
|
62 |
+
3. **Model Training**
|
63 |
+
- Interactive parameter tuning
|
64 |
+
- Real-time performance metrics
|
65 |
+
- Visual model evaluation
|
66 |
+
|
67 |
+
## Contributing π€
|
68 |
+
|
69 |
+
Please read our [Contributing Guidelines](CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests.
|
70 |
+
|
71 |
+
## Security π
|
72 |
+
|
73 |
+
For security concerns, please review our [Security Policy](.github/SECURITY.md).
|
74 |
+
|
75 |
+
## License π
|
76 |
+
|
77 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
78 |
+
|
79 |
+
## Acknowledgments π
|
80 |
+
|
81 |
+
- Streamlit community for the amazing framework
|
82 |
+
- Scikit-learn team for the ML tools
|
83 |
+
- All contributors who help improve this project
|