Canstralian commited on
Commit
8e3ebf1
Β·
verified Β·
1 Parent(s): 9645986

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -13
README.md CHANGED
@@ -1,13 +1,83 @@
1
- ---
2
- title: SecurePipeline
3
- emoji: πŸ“Š
4
- colorFrom: indigo
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.41.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ML Pipeline for Cybersecurity Purple Teaming πŸ›‘οΈ
3
+ emoji: πŸƒ
4
+ colorFrom: indigo
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.41.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ short_description: A Streamlit-based machine learning pipeline platform
12
+ ---
13
+
14
+ # ML Pipeline for Cybersecurity Purple Teaming πŸ›‘οΈ
15
+
16
+ A scalable Streamlit-based machine learning pipeline platform specialized for cybersecurity purple-teaming, enabling advanced data processing and model training.
17
+
18
+ ## Features πŸš€
19
+
20
+ - **Distributed Data Processing**: Leverage Dask for handling large-scale datasets
21
+ - **Interactive ML Pipeline**: Build and customize machine learning workflows
22
+ - **Real-time Visualization**: Monitor model performance and data insights
23
+ - **Cybersecurity Focus**: Tailored for purple team operations and security analytics
24
+
25
+ ## Tech Stack πŸ’»
26
+
27
+ - **Dask**: Distributed data processing
28
+ - **Scikit-learn**: ML model training and evaluation
29
+ - **Streamlit**: Interactive web interface
30
+ - **Pandas/NumPy**: Data manipulation and analysis
31
+ - **Matplotlib/Seaborn**: Data visualization
32
+
33
+ ## Getting Started 🏁
34
+
35
+ 1. **Clone the repository**
36
+ ```bash
37
+ git clone https://github.com/yourusername/cybersec-ml-pipeline.git
38
+ cd cybersec-ml-pipeline
39
+ ```
40
+
41
+ 2. **Install dependencies**
42
+ ```bash
43
+ pip install -r requirements.txt
44
+ ```
45
+
46
+ 3. **Run the application**
47
+ ```bash
48
+ streamlit run app.py
49
+ ```
50
+
51
+ ## Usage Guide πŸ“–
52
+
53
+ 1. **Data Upload**
54
+ - Support for CSV and JSON formats
55
+ - Automatic handling of large datasets using Dask
56
+
57
+ 2. **Pipeline Configuration**
58
+ - Choose preprocessing steps
59
+ - Configure model parameters
60
+ - Select features for training
61
+
62
+ 3. **Model Training**
63
+ - Interactive parameter tuning
64
+ - Real-time performance metrics
65
+ - Visual model evaluation
66
+
67
+ ## Contributing 🀝
68
+
69
+ Please read our [Contributing Guidelines](CONTRIBUTING.md) for details on our code of conduct and the process for submitting pull requests.
70
+
71
+ ## Security πŸ”’
72
+
73
+ For security concerns, please review our [Security Policy](.github/SECURITY.md).
74
+
75
+ ## License πŸ“„
76
+
77
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
78
+
79
+ ## Acknowledgments πŸ‘
80
+
81
+ - Streamlit community for the amazing framework
82
+ - Scikit-learn team for the ML tools
83
+ - All contributors who help improve this project