Spaces:
Build error
Build error
Canstralian
commited on
Create training_and_evaluation.py
Browse files- training_and_evaluation.py +100 -0
training_and_evaluation.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datasets import load_dataset, load_metric
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoAdapterModel, AutoTokenizer, TrainingArguments, Trainer
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# Load environment variables from .env file
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Access environment variables using os.getenv()
|
11 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
+
WAND_API_KEY = os.getenv("WAND_API_KEY")
|
15 |
+
|
16 |
+
# Use these variables as needed in your code
|
17 |
+
|
18 |
+
|
19 |
+
# Load datasets
|
20 |
+
dataset_pentesting = load_dataset("canstralian/pentesting-ai")
|
21 |
+
dataset_redpajama = load_dataset("togethercomputer/RedPajama-Data-1T")
|
22 |
+
|
23 |
+
# Tokenizer
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("canstralian/rabbitredeux")
|
25 |
+
|
26 |
+
def tokenize_function(examples):
|
27 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
28 |
+
|
29 |
+
# Tokenize datasets
|
30 |
+
tokenized_dataset_pentesting = dataset_pentesting.map(tokenize_function, batched=True)
|
31 |
+
tokenized_dataset_redpajama = dataset_redpajama.map(tokenize_function, batched=True)
|
32 |
+
|
33 |
+
# Prepare datasets
|
34 |
+
train_dataset_pentesting = tokenized_dataset_pentesting["train"]
|
35 |
+
validation_dataset_pentesting = tokenized_dataset_pentesting["validation"]
|
36 |
+
|
37 |
+
# Load model and adapter
|
38 |
+
model = AutoAdapterModel.from_pretrained("canstralian/rabbitredeux")
|
39 |
+
model.load_adapter("Canstralian/RabbitRedux", set_active=True)
|
40 |
+
|
41 |
+
# Load metric (accuracy)
|
42 |
+
metric = load_metric("accuracy")
|
43 |
+
|
44 |
+
# Training arguments
|
45 |
+
training_args = TrainingArguments(
|
46 |
+
output_dir="./results",
|
47 |
+
num_train_epochs=3,
|
48 |
+
per_device_train_batch_size=8,
|
49 |
+
per_device_eval_batch_size=8,
|
50 |
+
warmup_steps=500,
|
51 |
+
weight_decay=0.01,
|
52 |
+
logging_dir="./logs",
|
53 |
+
logging_steps=10,
|
54 |
+
evaluation_strategy="epoch"
|
55 |
+
)
|
56 |
+
|
57 |
+
# Trainer setup
|
58 |
+
trainer = Trainer(
|
59 |
+
model=model,
|
60 |
+
args=training_args,
|
61 |
+
train_dataset=train_dataset_pentesting,
|
62 |
+
eval_dataset=validation_dataset_pentesting,
|
63 |
+
compute_metrics=lambda p: metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)
|
64 |
+
)
|
65 |
+
|
66 |
+
# Training
|
67 |
+
trainer.train()
|
68 |
+
|
69 |
+
# Evaluate model
|
70 |
+
eval_results = trainer.evaluate()
|
71 |
+
print("Evaluation Results: ", eval_results)
|
72 |
+
|
73 |
+
# Save the fine-tuned model
|
74 |
+
model.save_pretrained("./fine_tuned_model")
|
75 |
+
|
76 |
+
# Test model on new data
|
77 |
+
new_data = """
|
78 |
+
I love the ocean. It is so peaceful and serene.
|
79 |
+
"""
|
80 |
+
|
81 |
+
# Tokenize new data
|
82 |
+
tokenized_new_data = tokenize_function({"text": [new_data]})
|
83 |
+
input_ids = tokenized_new_data["input_ids"][0]
|
84 |
+
attention_mask = tokenized_new_data["attention_mask"][0]
|
85 |
+
|
86 |
+
# Prediction
|
87 |
+
outputs = model(input_ids=np.array([input_ids]), attention_mask=np.array([attention_mask]))
|
88 |
+
prediction_scores = outputs.logits[0] # Getting logits for the first sample
|
89 |
+
|
90 |
+
# Get predicted label
|
91 |
+
predicted_label = np.argmax(prediction_scores)
|
92 |
+
|
93 |
+
print(f"The predicted label is: {predicted_label}")
|
94 |
+
|
95 |
+
# Evaluate predictions (using some assumed correct label)
|
96 |
+
actual_label = 1 # Replace with the actual label if known
|
97 |
+
|
98 |
+
accuracy = metric.compute(predictions=[predicted_label], references=[actual_label])
|
99 |
+
|
100 |
+
print(f"Accuracy on new data: {accuracy}")
|