Spaces:
Runtime error
Runtime error
Initial commit
Browse files- Dockerfile +9 -0
- main.py +137 -0
Dockerfile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
COPY requirements.txt .
|
4 |
+
|
5 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
6 |
+
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
CMD ["python main.py"]
|
main.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import pandas as pd
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
|
6 |
+
class Model:
|
7 |
+
"""
|
8 |
+
Class containing the info of a model.
|
9 |
+
|
10 |
+
:param name: Name of the model
|
11 |
+
:param elo: Elo rating of the model
|
12 |
+
:param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
|
13 |
+
"""
|
14 |
+
def __init__(self, name, elo=1200, games_played=0):
|
15 |
+
self.name = name
|
16 |
+
self.elo = elo
|
17 |
+
self.games_played = games_played
|
18 |
+
|
19 |
+
|
20 |
+
class Matchmaking:
|
21 |
+
"""
|
22 |
+
Class managing the matchmaking between the models.
|
23 |
+
|
24 |
+
:param models: List of models
|
25 |
+
:param queue: Temporary list of models used for the matching process
|
26 |
+
:param k: Dev coefficient
|
27 |
+
:param max_diff: Maximum difference considered between two models' elo
|
28 |
+
:param matches: Dictionary containing the match history (to later upload as CSV)
|
29 |
+
"""
|
30 |
+
def __init__(self, models):
|
31 |
+
self.models = models
|
32 |
+
self.queue = self.models.copy()
|
33 |
+
self.k = 20
|
34 |
+
self.max_diff = 500
|
35 |
+
self.matches = {
|
36 |
+
"model1": [],
|
37 |
+
"model2": [],
|
38 |
+
"result": [],
|
39 |
+
"datetime": []
|
40 |
+
}
|
41 |
+
|
42 |
+
def run(self):
|
43 |
+
"""
|
44 |
+
Run the matchmaking process.
|
45 |
+
Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
|
46 |
+
Compute the new elo for each model after each match and add the match to the match history.
|
47 |
+
"""
|
48 |
+
for i in range(10):
|
49 |
+
self.queue = self.models.copy()
|
50 |
+
random.shuffle(self.queue)
|
51 |
+
while len(self.queue) > 1:
|
52 |
+
model1 = self.queue.pop(0)
|
53 |
+
model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
|
54 |
+
result = match(model1, model2)
|
55 |
+
self.compute_elo(model1, model2, result)
|
56 |
+
self.matches["model1"].append(model1.name)
|
57 |
+
self.matches["model2"].append(model2.name)
|
58 |
+
self.matches["result"].append(result)
|
59 |
+
self.matches["datetime"].append(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
60 |
+
|
61 |
+
def compute_elo(self, model1, model2, result):
|
62 |
+
""" Compute the new elo for each model based on a match result. """
|
63 |
+
delta = model1.elo - model2.elo
|
64 |
+
win_probability = 1 / (1 + 10 ** (-delta / 500))
|
65 |
+
model1.elo += self.k * (result - win_probability)
|
66 |
+
model2.elo -= self.k * (result - win_probability)
|
67 |
+
|
68 |
+
def find_n_closest_indexes(self, model, n) -> int:
|
69 |
+
"""
|
70 |
+
Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
|
71 |
+
We don't always pick the closest rating to add variety to the matchups.
|
72 |
+
|
73 |
+
:param model: Model to compare
|
74 |
+
:param n: Number of close models from which to pick a candidate
|
75 |
+
:return: id of the chosen candidate
|
76 |
+
"""
|
77 |
+
indexes = []
|
78 |
+
closest_diffs = [9999999] * n
|
79 |
+
for i, m in enumerate(self.queue):
|
80 |
+
if m.name == model.name:
|
81 |
+
continue
|
82 |
+
diff = abs(m.elo - model.elo)
|
83 |
+
if diff < max(closest_diffs):
|
84 |
+
closest_diffs.append(diff)
|
85 |
+
closest_diffs.sort()
|
86 |
+
closest_diffs.pop()
|
87 |
+
indexes.append(i)
|
88 |
+
random.shuffle(indexes)
|
89 |
+
return indexes[0]
|
90 |
+
|
91 |
+
def to_csv(self):
|
92 |
+
""" Save the match history as a CSV file to the hub. """
|
93 |
+
df = pd.DataFrame(columns=['name', 'elo'])
|
94 |
+
for model in self.models:
|
95 |
+
df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])])
|
96 |
+
df.to_csv('elo.csv', index=False)
|
97 |
+
df_matches = pd.DataFrame(self.matches)
|
98 |
+
df_matches.to_csv(f"matches/{datetime.now().strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv", index=False)
|
99 |
+
|
100 |
+
|
101 |
+
def match(model1, model2) -> float:
|
102 |
+
"""
|
103 |
+
!!! Current code is placeholder !!!
|
104 |
+
TODO: Launch a Unity process with the 2 models and get the result of the match
|
105 |
+
|
106 |
+
:param model1: First Model object
|
107 |
+
:param model2: Second Model object
|
108 |
+
:return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
|
109 |
+
"""
|
110 |
+
result = random.randint(0, 2) / 2
|
111 |
+
return result
|
112 |
+
|
113 |
+
|
114 |
+
def get_models_list() -> list:
|
115 |
+
"""
|
116 |
+
!!! Current code is placeholder !!!
|
117 |
+
TODO: Create a list of Model objects from the models found on the hub
|
118 |
+
|
119 |
+
:return: list of Model objects
|
120 |
+
"""
|
121 |
+
models = []
|
122 |
+
data = pd.read_csv("example.csv")
|
123 |
+
for i, row in data.iterrows():
|
124 |
+
models.append(Model(row["name"], row["elo"]))
|
125 |
+
return models
|
126 |
+
|
127 |
+
|
128 |
+
def init_matchmaking():
|
129 |
+
models = get_models_list()
|
130 |
+
matchmaking = Matchmaking(models)
|
131 |
+
matchmaking.run()
|
132 |
+
matchmaking.to_csv()
|
133 |
+
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
print("It's running!")
|
137 |
+
# init_matchmaking()
|