Spaces:
Build error
Build error
Commit
·
d930560
1
Parent(s):
e133c3b
CarlDennis
Browse files- __pycache__/app.cpython-37.pyc +0 -0
- __pycache__/attentions.cpython-37.pyc +0 -0
- __pycache__/commons.cpython-37.pyc +0 -0
- __pycache__/models.cpython-37.pyc +0 -0
- __pycache__/modules.cpython-37.pyc +0 -0
- __pycache__/transforms.cpython-37.pyc +0 -0
- __pycache__/utils.cpython-37.pyc +0 -0
- app.py +120 -0
- attentions.py +300 -0
- commons.py +97 -0
- jieba/dict.txt +0 -0
- models.py +498 -0
- modules.py +387 -0
- muse_tricolor_b.json +1 -0
- requirements.txt +18 -0
- text/LICENSE +19 -0
- text/__init__.py +32 -0
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/cleaners.cpython-37.pyc +0 -0
- text/__pycache__/japanese.cpython-37.pyc +0 -0
- text/__pycache__/mandarin.cpython-37.pyc +0 -0
- text/__pycache__/tz +1 -0
- text/cleaners.py +87 -0
- text/japanese.py +132 -0
- text/korean.py +205 -0
- text/mandarin.py +170 -0
- text/sanskrit.py +62 -0
- transforms.py +193 -0
- utils.py +76 -0
__pycache__/app.cpython-37.pyc
ADDED
Binary file (5.42 kB). View file
|
|
__pycache__/attentions.cpython-37.pyc
ADDED
Binary file (9.62 kB). View file
|
|
__pycache__/commons.cpython-37.pyc
ADDED
Binary file (3.28 kB). View file
|
|
__pycache__/models.cpython-37.pyc
ADDED
Binary file (14.3 kB). View file
|
|
__pycache__/modules.cpython-37.pyc
ADDED
Binary file (11.5 kB). View file
|
|
__pycache__/transforms.cpython-37.pyc
ADDED
Binary file (3.85 kB). View file
|
|
__pycache__/utils.cpython-37.pyc
ADDED
Binary file (2.75 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import unicodedata
|
5 |
+
import commons
|
6 |
+
import utils
|
7 |
+
from models import SynthesizerTrn
|
8 |
+
from text import text_to_sequence
|
9 |
+
|
10 |
+
config_json = "muse_tricolor_b.json"
|
11 |
+
pth_path = "G=496.pth"
|
12 |
+
|
13 |
+
|
14 |
+
def get_text(text, hps, cleaned=False):
|
15 |
+
if cleaned:
|
16 |
+
text_norm = text_to_sequence(text, hps.symbols, [])
|
17 |
+
else:
|
18 |
+
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
19 |
+
if hps.data.add_blank:
|
20 |
+
text_norm = commons.intersperse(text_norm, 0)
|
21 |
+
text_norm = torch.LongTensor(text_norm)
|
22 |
+
return text_norm
|
23 |
+
|
24 |
+
|
25 |
+
def get_label(text, label):
|
26 |
+
if f'[{label}]' in text:
|
27 |
+
return True, text.replace(f'[{label}]', '')
|
28 |
+
else:
|
29 |
+
return False, text
|
30 |
+
|
31 |
+
|
32 |
+
def clean_text(text):
|
33 |
+
print(text)
|
34 |
+
jap = re.compile(r'[\u3040-\u309F\u30A0-\u30FF]') # 匹配日文
|
35 |
+
text = unicodedata.normalize('NFKC', text)
|
36 |
+
text = f"[JA]{text}[JA]" if jap.search(text) else f"[ZH]{text}[ZH]"
|
37 |
+
return text
|
38 |
+
|
39 |
+
|
40 |
+
def load_model(config_json, pth_path):
|
41 |
+
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
42 |
+
hps_ms = utils.get_hparams_from_file(f"{config_json}")
|
43 |
+
n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
|
44 |
+
n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
|
45 |
+
net_g_ms = SynthesizerTrn(
|
46 |
+
n_symbols,
|
47 |
+
hps_ms.data.filter_length // 2 + 1,
|
48 |
+
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
49 |
+
n_speakers=n_speakers,
|
50 |
+
**hps_ms.model).to(dev)
|
51 |
+
_ = net_g_ms.eval()
|
52 |
+
_ = utils.load_checkpoint(pth_path, net_g_ms)
|
53 |
+
return net_g_ms
|
54 |
+
|
55 |
+
net_g_ms = load_model(config_json, pth_path)
|
56 |
+
|
57 |
+
def selection(speaker):
|
58 |
+
if speaker == "南小鸟":
|
59 |
+
spk = 0
|
60 |
+
return spk
|
61 |
+
|
62 |
+
elif speaker == "园田海未":
|
63 |
+
spk = 1
|
64 |
+
return spk
|
65 |
+
|
66 |
+
elif speaker == "小泉花阳":
|
67 |
+
spk = 2
|
68 |
+
return spk
|
69 |
+
|
70 |
+
elif speaker == "星空凛":
|
71 |
+
spk = 3
|
72 |
+
return spk
|
73 |
+
|
74 |
+
elif speaker == "东条希":
|
75 |
+
spk = 4
|
76 |
+
return spk
|
77 |
+
|
78 |
+
elif speaker == "矢泽妮可":
|
79 |
+
spk = 5
|
80 |
+
return spk
|
81 |
+
|
82 |
+
elif speaker == "绚濑绘里":
|
83 |
+
spk = 6
|
84 |
+
return spk
|
85 |
+
|
86 |
+
elif speaker == "西木野真姬":
|
87 |
+
spk = 7
|
88 |
+
return spk
|
89 |
+
|
90 |
+
elif speaker == "高坂穗乃果":
|
91 |
+
spk = 8
|
92 |
+
return spk
|
93 |
+
|
94 |
+
def infer(text,speaker_id):
|
95 |
+
text = clean_text(text)
|
96 |
+
speaker_id = int(selection(speaker_id))
|
97 |
+
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
98 |
+
hps_ms = utils.get_hparams_from_file(f"{config_json}")
|
99 |
+
with torch.no_grad():
|
100 |
+
stn_tst = get_text(text, hps_ms, cleaned=False)
|
101 |
+
x_tst = stn_tst.unsqueeze(0).to(dev)
|
102 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
103 |
+
sid = torch.LongTensor([speaker_id]).to(dev)
|
104 |
+
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1)[0][
|
105 |
+
0, 0].data.cpu().float().numpy()
|
106 |
+
return (hps_ms.data.sampling_rate, audio)
|
107 |
+
|
108 |
+
idols = ["南小鸟","园田海未","小泉花阳","星空凛","东条希","矢泽妮可","绚濑绘里","西木野真姬","高坂穗乃果"]
|
109 |
+
app = gr.Blocks()
|
110 |
+
with app:
|
111 |
+
with gr.Tabs():
|
112 |
+
|
113 |
+
with gr.TabItem("Basic"):
|
114 |
+
|
115 |
+
tts_input1 = gr.TextArea(label="请输入纯中文或纯日文", value="大家好")
|
116 |
+
speaker1 = gr.Dropdown(label="选择说话人",choices=idols, value="高坂穗乃果", interactive=True)
|
117 |
+
tts_submit = gr.Button("Generate", variant="primary")
|
118 |
+
tts_output2 = gr.Audio(label="Output")
|
119 |
+
tts_submit.click(infer, [tts_input1,speaker1], [tts_output2])
|
120 |
+
app.launch()
|
attentions.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
from modules import LayerNorm
|
8 |
+
|
9 |
+
|
10 |
+
class Encoder(nn.Module):
|
11 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.hidden_channels = hidden_channels
|
14 |
+
self.filter_channels = filter_channels
|
15 |
+
self.n_heads = n_heads
|
16 |
+
self.n_layers = n_layers
|
17 |
+
self.kernel_size = kernel_size
|
18 |
+
self.p_dropout = p_dropout
|
19 |
+
self.window_size = window_size
|
20 |
+
|
21 |
+
self.drop = nn.Dropout(p_dropout)
|
22 |
+
self.attn_layers = nn.ModuleList()
|
23 |
+
self.norm_layers_1 = nn.ModuleList()
|
24 |
+
self.ffn_layers = nn.ModuleList()
|
25 |
+
self.norm_layers_2 = nn.ModuleList()
|
26 |
+
for i in range(self.n_layers):
|
27 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
28 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
29 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
30 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
31 |
+
|
32 |
+
def forward(self, x, x_mask):
|
33 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
34 |
+
x = x * x_mask
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
37 |
+
y = self.drop(y)
|
38 |
+
x = self.norm_layers_1[i](x + y)
|
39 |
+
|
40 |
+
y = self.ffn_layers[i](x, x_mask)
|
41 |
+
y = self.drop(y)
|
42 |
+
x = self.norm_layers_2[i](x + y)
|
43 |
+
x = x * x_mask
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class Decoder(nn.Module):
|
48 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
49 |
+
super().__init__()
|
50 |
+
self.hidden_channels = hidden_channels
|
51 |
+
self.filter_channels = filter_channels
|
52 |
+
self.n_heads = n_heads
|
53 |
+
self.n_layers = n_layers
|
54 |
+
self.kernel_size = kernel_size
|
55 |
+
self.p_dropout = p_dropout
|
56 |
+
self.proximal_bias = proximal_bias
|
57 |
+
self.proximal_init = proximal_init
|
58 |
+
|
59 |
+
self.drop = nn.Dropout(p_dropout)
|
60 |
+
self.self_attn_layers = nn.ModuleList()
|
61 |
+
self.norm_layers_0 = nn.ModuleList()
|
62 |
+
self.encdec_attn_layers = nn.ModuleList()
|
63 |
+
self.norm_layers_1 = nn.ModuleList()
|
64 |
+
self.ffn_layers = nn.ModuleList()
|
65 |
+
self.norm_layers_2 = nn.ModuleList()
|
66 |
+
for i in range(self.n_layers):
|
67 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
68 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
69 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
70 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
71 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
72 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
73 |
+
|
74 |
+
def forward(self, x, x_mask, h, h_mask):
|
75 |
+
"""
|
76 |
+
x: decoder input
|
77 |
+
h: encoder output
|
78 |
+
"""
|
79 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
80 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
81 |
+
x = x * x_mask
|
82 |
+
for i in range(self.n_layers):
|
83 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
84 |
+
y = self.drop(y)
|
85 |
+
x = self.norm_layers_0[i](x + y)
|
86 |
+
|
87 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
88 |
+
y = self.drop(y)
|
89 |
+
x = self.norm_layers_1[i](x + y)
|
90 |
+
|
91 |
+
y = self.ffn_layers[i](x, x_mask)
|
92 |
+
y = self.drop(y)
|
93 |
+
x = self.norm_layers_2[i](x + y)
|
94 |
+
x = x * x_mask
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class MultiHeadAttention(nn.Module):
|
99 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
100 |
+
super().__init__()
|
101 |
+
assert channels % n_heads == 0
|
102 |
+
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.n_heads = n_heads
|
106 |
+
self.p_dropout = p_dropout
|
107 |
+
self.window_size = window_size
|
108 |
+
self.heads_share = heads_share
|
109 |
+
self.block_length = block_length
|
110 |
+
self.proximal_bias = proximal_bias
|
111 |
+
self.proximal_init = proximal_init
|
112 |
+
self.attn = None
|
113 |
+
|
114 |
+
self.k_channels = channels // n_heads
|
115 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
116 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
117 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
118 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
119 |
+
self.drop = nn.Dropout(p_dropout)
|
120 |
+
|
121 |
+
if window_size is not None:
|
122 |
+
n_heads_rel = 1 if heads_share else n_heads
|
123 |
+
rel_stddev = self.k_channels**-0.5
|
124 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
125 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
126 |
+
|
127 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
128 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
129 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
130 |
+
if proximal_init:
|
131 |
+
with torch.no_grad():
|
132 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
133 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
134 |
+
|
135 |
+
def forward(self, x, c, attn_mask=None):
|
136 |
+
q = self.conv_q(x)
|
137 |
+
k = self.conv_k(c)
|
138 |
+
v = self.conv_v(c)
|
139 |
+
|
140 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
141 |
+
|
142 |
+
x = self.conv_o(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def attention(self, query, key, value, mask=None):
|
146 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
147 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
148 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
149 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
150 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
151 |
+
|
152 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
153 |
+
if self.window_size is not None:
|
154 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
155 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
156 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
157 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
158 |
+
scores = scores + scores_local
|
159 |
+
if self.proximal_bias:
|
160 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
161 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
162 |
+
if mask is not None:
|
163 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
164 |
+
if self.block_length is not None:
|
165 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
166 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
167 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
168 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
169 |
+
p_attn = self.drop(p_attn)
|
170 |
+
output = torch.matmul(p_attn, value)
|
171 |
+
if self.window_size is not None:
|
172 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
173 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
174 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
175 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
176 |
+
return output, p_attn
|
177 |
+
|
178 |
+
def _matmul_with_relative_values(self, x, y):
|
179 |
+
"""
|
180 |
+
x: [b, h, l, m]
|
181 |
+
y: [h or 1, m, d]
|
182 |
+
ret: [b, h, l, d]
|
183 |
+
"""
|
184 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
185 |
+
return ret
|
186 |
+
|
187 |
+
def _matmul_with_relative_keys(self, x, y):
|
188 |
+
"""
|
189 |
+
x: [b, h, l, d]
|
190 |
+
y: [h or 1, m, d]
|
191 |
+
ret: [b, h, l, m]
|
192 |
+
"""
|
193 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
194 |
+
return ret
|
195 |
+
|
196 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
197 |
+
max_relative_position = 2 * self.window_size + 1
|
198 |
+
# Pad first before slice to avoid using cond ops.
|
199 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
200 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
201 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
202 |
+
if pad_length > 0:
|
203 |
+
padded_relative_embeddings = F.pad(
|
204 |
+
relative_embeddings,
|
205 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
206 |
+
else:
|
207 |
+
padded_relative_embeddings = relative_embeddings
|
208 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
209 |
+
return used_relative_embeddings
|
210 |
+
|
211 |
+
def _relative_position_to_absolute_position(self, x):
|
212 |
+
"""
|
213 |
+
x: [b, h, l, 2*l-1]
|
214 |
+
ret: [b, h, l, l]
|
215 |
+
"""
|
216 |
+
batch, heads, length, _ = x.size()
|
217 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
218 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
219 |
+
|
220 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
221 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
222 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
223 |
+
|
224 |
+
# Reshape and slice out the padded elements.
|
225 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
226 |
+
return x_final
|
227 |
+
|
228 |
+
def _absolute_position_to_relative_position(self, x):
|
229 |
+
"""
|
230 |
+
x: [b, h, l, l]
|
231 |
+
ret: [b, h, l, 2*l-1]
|
232 |
+
"""
|
233 |
+
batch, heads, length, _ = x.size()
|
234 |
+
# padd along column
|
235 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
236 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
237 |
+
# add 0's in the beginning that will skew the elements after reshape
|
238 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
239 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
240 |
+
return x_final
|
241 |
+
|
242 |
+
def _attention_bias_proximal(self, length):
|
243 |
+
"""Bias for self-attention to encourage attention to close positions.
|
244 |
+
Args:
|
245 |
+
length: an integer scalar.
|
246 |
+
Returns:
|
247 |
+
a Tensor with shape [1, 1, length, length]
|
248 |
+
"""
|
249 |
+
r = torch.arange(length, dtype=torch.float32)
|
250 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
251 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
252 |
+
|
253 |
+
|
254 |
+
class FFN(nn.Module):
|
255 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
256 |
+
super().__init__()
|
257 |
+
self.in_channels = in_channels
|
258 |
+
self.out_channels = out_channels
|
259 |
+
self.filter_channels = filter_channels
|
260 |
+
self.kernel_size = kernel_size
|
261 |
+
self.p_dropout = p_dropout
|
262 |
+
self.activation = activation
|
263 |
+
self.causal = causal
|
264 |
+
|
265 |
+
if causal:
|
266 |
+
self.padding = self._causal_padding
|
267 |
+
else:
|
268 |
+
self.padding = self._same_padding
|
269 |
+
|
270 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
271 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
272 |
+
self.drop = nn.Dropout(p_dropout)
|
273 |
+
|
274 |
+
def forward(self, x, x_mask):
|
275 |
+
x = self.conv_1(self.padding(x * x_mask))
|
276 |
+
if self.activation == "gelu":
|
277 |
+
x = x * torch.sigmoid(1.702 * x)
|
278 |
+
else:
|
279 |
+
x = torch.relu(x)
|
280 |
+
x = self.drop(x)
|
281 |
+
x = self.conv_2(self.padding(x * x_mask))
|
282 |
+
return x * x_mask
|
283 |
+
|
284 |
+
def _causal_padding(self, x):
|
285 |
+
if self.kernel_size == 1:
|
286 |
+
return x
|
287 |
+
pad_l = self.kernel_size - 1
|
288 |
+
pad_r = 0
|
289 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
290 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
291 |
+
return x
|
292 |
+
|
293 |
+
def _same_padding(self, x):
|
294 |
+
if self.kernel_size == 1:
|
295 |
+
return x
|
296 |
+
pad_l = (self.kernel_size - 1) // 2
|
297 |
+
pad_r = self.kernel_size // 2
|
298 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
299 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
300 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torch.jit
|
5 |
+
|
6 |
+
|
7 |
+
def script_method(fn, _rcb=None):
|
8 |
+
return fn
|
9 |
+
|
10 |
+
|
11 |
+
def script(obj, optimize=True, _frames_up=0, _rcb=None):
|
12 |
+
return obj
|
13 |
+
|
14 |
+
|
15 |
+
torch.jit.script_method = script_method
|
16 |
+
torch.jit.script = script
|
17 |
+
|
18 |
+
|
19 |
+
def init_weights(m, mean=0.0, std=0.01):
|
20 |
+
classname = m.__class__.__name__
|
21 |
+
if classname.find("Conv") != -1:
|
22 |
+
m.weight.data.normal_(mean, std)
|
23 |
+
|
24 |
+
|
25 |
+
def get_padding(kernel_size, dilation=1):
|
26 |
+
return int((kernel_size*dilation - dilation)/2)
|
27 |
+
|
28 |
+
|
29 |
+
def intersperse(lst, item):
|
30 |
+
result = [item] * (len(lst) * 2 + 1)
|
31 |
+
result[1::2] = lst
|
32 |
+
return result
|
33 |
+
|
34 |
+
|
35 |
+
def slice_segments(x, ids_str, segment_size=4):
|
36 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
37 |
+
for i in range(x.size(0)):
|
38 |
+
idx_str = ids_str[i]
|
39 |
+
idx_end = idx_str + segment_size
|
40 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
41 |
+
return ret
|
42 |
+
|
43 |
+
|
44 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
45 |
+
b, d, t = x.size()
|
46 |
+
if x_lengths is None:
|
47 |
+
x_lengths = t
|
48 |
+
ids_str_max = x_lengths - segment_size + 1
|
49 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
50 |
+
ret = slice_segments(x, ids_str, segment_size)
|
51 |
+
return ret, ids_str
|
52 |
+
|
53 |
+
|
54 |
+
def subsequent_mask(length):
|
55 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
56 |
+
return mask
|
57 |
+
|
58 |
+
|
59 |
+
@torch.jit.script
|
60 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
61 |
+
n_channels_int = n_channels[0]
|
62 |
+
in_act = input_a + input_b
|
63 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
64 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
65 |
+
acts = t_act * s_act
|
66 |
+
return acts
|
67 |
+
|
68 |
+
|
69 |
+
def convert_pad_shape(pad_shape):
|
70 |
+
l = pad_shape[::-1]
|
71 |
+
pad_shape = [item for sublist in l for item in sublist]
|
72 |
+
return pad_shape
|
73 |
+
|
74 |
+
|
75 |
+
def sequence_mask(length, max_length=None):
|
76 |
+
if max_length is None:
|
77 |
+
max_length = length.max()
|
78 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
79 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
80 |
+
|
81 |
+
|
82 |
+
def generate_path(duration, mask):
|
83 |
+
"""
|
84 |
+
duration: [b, 1, t_x]
|
85 |
+
mask: [b, 1, t_y, t_x]
|
86 |
+
"""
|
87 |
+
device = duration.device
|
88 |
+
|
89 |
+
b, _, t_y, t_x = mask.shape
|
90 |
+
cum_duration = torch.cumsum(duration, -1)
|
91 |
+
|
92 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
93 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
94 |
+
path = path.view(b, t_x, t_y)
|
95 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
96 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
97 |
+
return path
|
jieba/dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
8 |
+
|
9 |
+
import attentions
|
10 |
+
import commons
|
11 |
+
import modules
|
12 |
+
from commons import init_weights, get_padding
|
13 |
+
|
14 |
+
|
15 |
+
class StochasticDurationPredictor(nn.Module):
|
16 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
17 |
+
super().__init__()
|
18 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
+
self.in_channels = in_channels
|
20 |
+
self.filter_channels = filter_channels
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.n_flows = n_flows
|
24 |
+
self.gin_channels = gin_channels
|
25 |
+
|
26 |
+
self.log_flow = modules.Log()
|
27 |
+
self.flows = nn.ModuleList()
|
28 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
+
for i in range(n_flows):
|
30 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
31 |
+
self.flows.append(modules.Flip())
|
32 |
+
|
33 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
36 |
+
self.post_flows = nn.ModuleList()
|
37 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
+
for i in range(4):
|
39 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
40 |
+
self.post_flows.append(modules.Flip())
|
41 |
+
|
42 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
45 |
+
if gin_channels != 0:
|
46 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
+
|
48 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
49 |
+
x = torch.detach(x)
|
50 |
+
x = self.pre(x)
|
51 |
+
if g is not None:
|
52 |
+
g = torch.detach(g)
|
53 |
+
x = x + self.cond(g)
|
54 |
+
x = self.convs(x, x_mask)
|
55 |
+
x = self.proj(x) * x_mask
|
56 |
+
|
57 |
+
if not reverse:
|
58 |
+
flows = self.flows
|
59 |
+
assert w is not None
|
60 |
+
|
61 |
+
logdet_tot_q = 0
|
62 |
+
h_w = self.post_pre(w)
|
63 |
+
h_w = self.post_convs(h_w, x_mask)
|
64 |
+
h_w = self.post_proj(h_w) * x_mask
|
65 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
66 |
+
z_q = e_q
|
67 |
+
for flow in self.post_flows:
|
68 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
69 |
+
logdet_tot_q += logdet_q
|
70 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
+
u = torch.sigmoid(z_u) * x_mask
|
72 |
+
z0 = (w - u) * x_mask
|
73 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
74 |
+
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
75 |
+
|
76 |
+
logdet_tot = 0
|
77 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
78 |
+
logdet_tot += logdet
|
79 |
+
z = torch.cat([z0, z1], 1)
|
80 |
+
for flow in flows:
|
81 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
+
logdet_tot = logdet_tot + logdet
|
83 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
84 |
+
return nll + logq # [b]
|
85 |
+
else:
|
86 |
+
flows = list(reversed(self.flows))
|
87 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
89 |
+
for flow in flows:
|
90 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
92 |
+
logw = z0
|
93 |
+
return logw
|
94 |
+
|
95 |
+
|
96 |
+
class DurationPredictor(nn.Module):
|
97 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.in_channels = in_channels
|
101 |
+
self.filter_channels = filter_channels
|
102 |
+
self.kernel_size = kernel_size
|
103 |
+
self.p_dropout = p_dropout
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.drop = nn.Dropout(p_dropout)
|
107 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
108 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
110 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
+
|
113 |
+
if gin_channels != 0:
|
114 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
115 |
+
|
116 |
+
def forward(self, x, x_mask, g=None):
|
117 |
+
x = torch.detach(x)
|
118 |
+
if g is not None:
|
119 |
+
g = torch.detach(g)
|
120 |
+
x = x + self.cond(g)
|
121 |
+
x = self.conv_1(x * x_mask)
|
122 |
+
x = torch.relu(x)
|
123 |
+
x = self.norm_1(x)
|
124 |
+
x = self.drop(x)
|
125 |
+
x = self.conv_2(x * x_mask)
|
126 |
+
x = torch.relu(x)
|
127 |
+
x = self.norm_2(x)
|
128 |
+
x = self.drop(x)
|
129 |
+
x = self.proj(x * x_mask)
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class TextEncoder(nn.Module):
|
134 |
+
def __init__(self,
|
135 |
+
n_vocab,
|
136 |
+
out_channels,
|
137 |
+
hidden_channels,
|
138 |
+
filter_channels,
|
139 |
+
n_heads,
|
140 |
+
n_layers,
|
141 |
+
kernel_size,
|
142 |
+
p_dropout):
|
143 |
+
super().__init__()
|
144 |
+
self.n_vocab = n_vocab
|
145 |
+
self.out_channels = out_channels
|
146 |
+
self.hidden_channels = hidden_channels
|
147 |
+
self.filter_channels = filter_channels
|
148 |
+
self.n_heads = n_heads
|
149 |
+
self.n_layers = n_layers
|
150 |
+
self.kernel_size = kernel_size
|
151 |
+
self.p_dropout = p_dropout
|
152 |
+
|
153 |
+
if self.n_vocab != 0:
|
154 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
155 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
156 |
+
|
157 |
+
self.encoder = attentions.Encoder(
|
158 |
+
hidden_channels,
|
159 |
+
filter_channels,
|
160 |
+
n_heads,
|
161 |
+
n_layers,
|
162 |
+
kernel_size,
|
163 |
+
p_dropout)
|
164 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
165 |
+
|
166 |
+
def forward(self, x, x_lengths):
|
167 |
+
if self.n_vocab != 0:
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(
|
200 |
+
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
201 |
+
gin_channels=gin_channels, mean_only=True))
|
202 |
+
self.flows.append(modules.Flip())
|
203 |
+
|
204 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
205 |
+
if not reverse:
|
206 |
+
for flow in self.flows:
|
207 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
208 |
+
else:
|
209 |
+
for flow in reversed(self.flows):
|
210 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
211 |
+
return x
|
212 |
+
|
213 |
+
|
214 |
+
class PosteriorEncoder(nn.Module):
|
215 |
+
def __init__(self,
|
216 |
+
in_channels,
|
217 |
+
out_channels,
|
218 |
+
hidden_channels,
|
219 |
+
kernel_size,
|
220 |
+
dilation_rate,
|
221 |
+
n_layers,
|
222 |
+
gin_channels=0):
|
223 |
+
super().__init__()
|
224 |
+
self.in_channels = in_channels
|
225 |
+
self.out_channels = out_channels
|
226 |
+
self.hidden_channels = hidden_channels
|
227 |
+
self.kernel_size = kernel_size
|
228 |
+
self.dilation_rate = dilation_rate
|
229 |
+
self.n_layers = n_layers
|
230 |
+
self.gin_channels = gin_channels
|
231 |
+
|
232 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
233 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
234 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
235 |
+
|
236 |
+
def forward(self, x, x_lengths, g=None):
|
237 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
238 |
+
x = self.pre(x) * x_mask
|
239 |
+
x = self.enc(x, x_mask, g=g)
|
240 |
+
stats = self.proj(x) * x_mask
|
241 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
242 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
243 |
+
return z, m, logs, x_mask
|
244 |
+
|
245 |
+
|
246 |
+
class Generator(torch.nn.Module):
|
247 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
248 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
249 |
+
super(Generator, self).__init__()
|
250 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
251 |
+
self.num_upsamples = len(upsample_rates)
|
252 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
253 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
254 |
+
|
255 |
+
self.ups = nn.ModuleList()
|
256 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
257 |
+
self.ups.append(weight_norm(
|
258 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
259 |
+
k, u, padding=(k - u) // 2)))
|
260 |
+
|
261 |
+
self.resblocks = nn.ModuleList()
|
262 |
+
for i in range(len(self.ups)):
|
263 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
264 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
265 |
+
self.resblocks.append(resblock(ch, k, d))
|
266 |
+
|
267 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
268 |
+
self.ups.apply(init_weights)
|
269 |
+
|
270 |
+
if gin_channels != 0:
|
271 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
272 |
+
|
273 |
+
def forward(self, x, g=None):
|
274 |
+
x = self.conv_pre(x)
|
275 |
+
if g is not None:
|
276 |
+
x = x + self.cond(g)
|
277 |
+
|
278 |
+
for i in range(self.num_upsamples):
|
279 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
280 |
+
x = self.ups[i](x)
|
281 |
+
xs = None
|
282 |
+
for j in range(self.num_kernels):
|
283 |
+
if xs is None:
|
284 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
285 |
+
else:
|
286 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
287 |
+
x = xs / self.num_kernels
|
288 |
+
x = F.leaky_relu(x)
|
289 |
+
x = self.conv_post(x)
|
290 |
+
x = torch.tanh(x)
|
291 |
+
|
292 |
+
return x
|
293 |
+
|
294 |
+
def remove_weight_norm(self):
|
295 |
+
print('Removing weight norm...')
|
296 |
+
for l in self.ups:
|
297 |
+
remove_weight_norm(l)
|
298 |
+
for l in self.resblocks:
|
299 |
+
l.remove_weight_norm()
|
300 |
+
|
301 |
+
|
302 |
+
class DiscriminatorP(torch.nn.Module):
|
303 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
304 |
+
super(DiscriminatorP, self).__init__()
|
305 |
+
self.period = period
|
306 |
+
self.use_spectral_norm = use_spectral_norm
|
307 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
308 |
+
self.convs = nn.ModuleList([
|
309 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
312 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
313 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
314 |
+
])
|
315 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
fmap = []
|
319 |
+
|
320 |
+
# 1d to 2d
|
321 |
+
b, c, t = x.shape
|
322 |
+
if t % self.period != 0: # pad first
|
323 |
+
n_pad = self.period - (t % self.period)
|
324 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
325 |
+
t = t + n_pad
|
326 |
+
x = x.view(b, c, t // self.period, self.period)
|
327 |
+
|
328 |
+
for l in self.convs:
|
329 |
+
x = l(x)
|
330 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
331 |
+
fmap.append(x)
|
332 |
+
x = self.conv_post(x)
|
333 |
+
fmap.append(x)
|
334 |
+
x = torch.flatten(x, 1, -1)
|
335 |
+
|
336 |
+
return x, fmap
|
337 |
+
|
338 |
+
|
339 |
+
class DiscriminatorS(torch.nn.Module):
|
340 |
+
def __init__(self, use_spectral_norm=False):
|
341 |
+
super(DiscriminatorS, self).__init__()
|
342 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
343 |
+
self.convs = nn.ModuleList([
|
344 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
345 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
346 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
347 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
348 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
349 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
350 |
+
])
|
351 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
352 |
+
|
353 |
+
def forward(self, x):
|
354 |
+
fmap = []
|
355 |
+
|
356 |
+
for l in self.convs:
|
357 |
+
x = l(x)
|
358 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
359 |
+
fmap.append(x)
|
360 |
+
x = self.conv_post(x)
|
361 |
+
fmap.append(x)
|
362 |
+
x = torch.flatten(x, 1, -1)
|
363 |
+
|
364 |
+
return x, fmap
|
365 |
+
|
366 |
+
|
367 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
368 |
+
def __init__(self, use_spectral_norm=False):
|
369 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
370 |
+
periods = [2, 3, 5, 7, 11]
|
371 |
+
|
372 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
373 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
374 |
+
self.discriminators = nn.ModuleList(discs)
|
375 |
+
|
376 |
+
def forward(self, y, y_hat):
|
377 |
+
y_d_rs = []
|
378 |
+
y_d_gs = []
|
379 |
+
fmap_rs = []
|
380 |
+
fmap_gs = []
|
381 |
+
for i, d in enumerate(self.discriminators):
|
382 |
+
y_d_r, fmap_r = d(y)
|
383 |
+
y_d_g, fmap_g = d(y_hat)
|
384 |
+
y_d_rs.append(y_d_r)
|
385 |
+
y_d_gs.append(y_d_g)
|
386 |
+
fmap_rs.append(fmap_r)
|
387 |
+
fmap_gs.append(fmap_g)
|
388 |
+
|
389 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
390 |
+
|
391 |
+
|
392 |
+
class SynthesizerTrn(nn.Module):
|
393 |
+
"""
|
394 |
+
Synthesizer for Training
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self,
|
398 |
+
n_vocab,
|
399 |
+
spec_channels,
|
400 |
+
segment_size,
|
401 |
+
inter_channels,
|
402 |
+
hidden_channels,
|
403 |
+
filter_channels,
|
404 |
+
n_heads,
|
405 |
+
n_layers,
|
406 |
+
kernel_size,
|
407 |
+
p_dropout,
|
408 |
+
resblock,
|
409 |
+
resblock_kernel_sizes,
|
410 |
+
resblock_dilation_sizes,
|
411 |
+
upsample_rates,
|
412 |
+
upsample_initial_channel,
|
413 |
+
upsample_kernel_sizes,
|
414 |
+
n_speakers=0,
|
415 |
+
gin_channels=0,
|
416 |
+
use_sdp=True,
|
417 |
+
**kwargs):
|
418 |
+
|
419 |
+
super().__init__()
|
420 |
+
self.n_vocab = n_vocab
|
421 |
+
self.spec_channels = spec_channels
|
422 |
+
self.inter_channels = inter_channels
|
423 |
+
self.hidden_channels = hidden_channels
|
424 |
+
self.filter_channels = filter_channels
|
425 |
+
self.n_heads = n_heads
|
426 |
+
self.n_layers = n_layers
|
427 |
+
self.kernel_size = kernel_size
|
428 |
+
self.p_dropout = p_dropout
|
429 |
+
self.resblock = resblock
|
430 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
431 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
432 |
+
self.upsample_rates = upsample_rates
|
433 |
+
self.upsample_initial_channel = upsample_initial_channel
|
434 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
435 |
+
self.segment_size = segment_size
|
436 |
+
self.n_speakers = n_speakers
|
437 |
+
self.gin_channels = gin_channels
|
438 |
+
|
439 |
+
self.use_sdp = use_sdp
|
440 |
+
|
441 |
+
self.enc_p = TextEncoder(n_vocab,
|
442 |
+
inter_channels,
|
443 |
+
hidden_channels,
|
444 |
+
filter_channels,
|
445 |
+
n_heads,
|
446 |
+
n_layers,
|
447 |
+
kernel_size,
|
448 |
+
p_dropout)
|
449 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
450 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
451 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
452 |
+
gin_channels=gin_channels)
|
453 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
454 |
+
|
455 |
+
if use_sdp:
|
456 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
457 |
+
else:
|
458 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
459 |
+
|
460 |
+
if n_speakers > 1:
|
461 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
462 |
+
|
463 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
464 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
465 |
+
if self.n_speakers > 0:
|
466 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
467 |
+
else:
|
468 |
+
g = None
|
469 |
+
|
470 |
+
if self.use_sdp:
|
471 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
472 |
+
else:
|
473 |
+
logw = self.dp(x, x_mask, g=g)
|
474 |
+
w = torch.exp(logw) * x_mask * length_scale
|
475 |
+
w_ceil = torch.ceil(w)
|
476 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
477 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
478 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
479 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
480 |
+
|
481 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
482 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
483 |
+
2) # [b, t', t], [b, t, d] -> [b, d, t']
|
484 |
+
|
485 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
486 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
487 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
488 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
489 |
+
|
490 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
491 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
492 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
493 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
494 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
495 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
496 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
497 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
498 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
46 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
47 |
+
self.relu_drop = nn.Sequential(
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Dropout(p_dropout))
|
50 |
+
for _ in range(n_layers-1):
|
51 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
52 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
53 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
54 |
+
self.proj.weight.data.zero_()
|
55 |
+
self.proj.bias.data.zero_()
|
56 |
+
|
57 |
+
def forward(self, x, x_mask):
|
58 |
+
x_org = x
|
59 |
+
for i in range(self.n_layers):
|
60 |
+
x = self.conv_layers[i](x * x_mask)
|
61 |
+
x = self.norm_layers[i](x)
|
62 |
+
x = self.relu_drop(x)
|
63 |
+
x = x_org + self.proj(x)
|
64 |
+
return x * x_mask
|
65 |
+
|
66 |
+
|
67 |
+
class DDSConv(nn.Module):
|
68 |
+
"""
|
69 |
+
Dialted and Depth-Separable Convolution
|
70 |
+
"""
|
71 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
72 |
+
super().__init__()
|
73 |
+
self.channels = channels
|
74 |
+
self.kernel_size = kernel_size
|
75 |
+
self.n_layers = n_layers
|
76 |
+
self.p_dropout = p_dropout
|
77 |
+
|
78 |
+
self.drop = nn.Dropout(p_dropout)
|
79 |
+
self.convs_sep = nn.ModuleList()
|
80 |
+
self.convs_1x1 = nn.ModuleList()
|
81 |
+
self.norms_1 = nn.ModuleList()
|
82 |
+
self.norms_2 = nn.ModuleList()
|
83 |
+
for i in range(n_layers):
|
84 |
+
dilation = kernel_size ** i
|
85 |
+
padding = (kernel_size * dilation - dilation) // 2
|
86 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
87 |
+
groups=channels, dilation=dilation, padding=padding
|
88 |
+
))
|
89 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
90 |
+
self.norms_1.append(LayerNorm(channels))
|
91 |
+
self.norms_2.append(LayerNorm(channels))
|
92 |
+
|
93 |
+
def forward(self, x, x_mask, g=None):
|
94 |
+
if g is not None:
|
95 |
+
x = x + g
|
96 |
+
for i in range(self.n_layers):
|
97 |
+
y = self.convs_sep[i](x * x_mask)
|
98 |
+
y = self.norms_1[i](y)
|
99 |
+
y = F.gelu(y)
|
100 |
+
y = self.convs_1x1[i](y)
|
101 |
+
y = self.norms_2[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.drop(y)
|
104 |
+
x = x + y
|
105 |
+
return x * x_mask
|
106 |
+
|
107 |
+
|
108 |
+
class WN(torch.nn.Module):
|
109 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
110 |
+
super(WN, self).__init__()
|
111 |
+
assert(kernel_size % 2 == 1)
|
112 |
+
self.hidden_channels =hidden_channels
|
113 |
+
self.kernel_size = kernel_size,
|
114 |
+
self.dilation_rate = dilation_rate
|
115 |
+
self.n_layers = n_layers
|
116 |
+
self.gin_channels = gin_channels
|
117 |
+
self.p_dropout = p_dropout
|
118 |
+
|
119 |
+
self.in_layers = torch.nn.ModuleList()
|
120 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
121 |
+
self.drop = nn.Dropout(p_dropout)
|
122 |
+
|
123 |
+
if gin_channels != 0:
|
124 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
125 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
126 |
+
|
127 |
+
for i in range(n_layers):
|
128 |
+
dilation = dilation_rate ** i
|
129 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
130 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
131 |
+
dilation=dilation, padding=padding)
|
132 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
133 |
+
self.in_layers.append(in_layer)
|
134 |
+
|
135 |
+
# last one is not necessary
|
136 |
+
if i < n_layers - 1:
|
137 |
+
res_skip_channels = 2 * hidden_channels
|
138 |
+
else:
|
139 |
+
res_skip_channels = hidden_channels
|
140 |
+
|
141 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
142 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
143 |
+
self.res_skip_layers.append(res_skip_layer)
|
144 |
+
|
145 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
146 |
+
output = torch.zeros_like(x)
|
147 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
148 |
+
|
149 |
+
if g is not None:
|
150 |
+
g = self.cond_layer(g)
|
151 |
+
|
152 |
+
for i in range(self.n_layers):
|
153 |
+
x_in = self.in_layers[i](x)
|
154 |
+
if g is not None:
|
155 |
+
cond_offset = i * 2 * self.hidden_channels
|
156 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
157 |
+
else:
|
158 |
+
g_l = torch.zeros_like(x_in)
|
159 |
+
|
160 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
161 |
+
x_in,
|
162 |
+
g_l,
|
163 |
+
n_channels_tensor)
|
164 |
+
acts = self.drop(acts)
|
165 |
+
|
166 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
167 |
+
if i < self.n_layers - 1:
|
168 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
169 |
+
x = (x + res_acts) * x_mask
|
170 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
171 |
+
else:
|
172 |
+
output = output + res_skip_acts
|
173 |
+
return output * x_mask
|
174 |
+
|
175 |
+
def remove_weight_norm(self):
|
176 |
+
if self.gin_channels != 0:
|
177 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
178 |
+
for l in self.in_layers:
|
179 |
+
torch.nn.utils.remove_weight_norm(l)
|
180 |
+
for l in self.res_skip_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
|
183 |
+
|
184 |
+
class ResBlock1(torch.nn.Module):
|
185 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
186 |
+
super(ResBlock1, self).__init__()
|
187 |
+
self.convs1 = nn.ModuleList([
|
188 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
189 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
191 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
193 |
+
padding=get_padding(kernel_size, dilation[2])))
|
194 |
+
])
|
195 |
+
self.convs1.apply(init_weights)
|
196 |
+
|
197 |
+
self.convs2 = nn.ModuleList([
|
198 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
199 |
+
padding=get_padding(kernel_size, 1))),
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1)))
|
204 |
+
])
|
205 |
+
self.convs2.apply(init_weights)
|
206 |
+
|
207 |
+
def forward(self, x, x_mask=None):
|
208 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
209 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
210 |
+
if x_mask is not None:
|
211 |
+
xt = xt * x_mask
|
212 |
+
xt = c1(xt)
|
213 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
214 |
+
if x_mask is not None:
|
215 |
+
xt = xt * x_mask
|
216 |
+
xt = c2(xt)
|
217 |
+
x = xt + x
|
218 |
+
if x_mask is not None:
|
219 |
+
x = x * x_mask
|
220 |
+
return x
|
221 |
+
|
222 |
+
def remove_weight_norm(self):
|
223 |
+
for l in self.convs1:
|
224 |
+
remove_weight_norm(l)
|
225 |
+
for l in self.convs2:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
|
228 |
+
|
229 |
+
class ResBlock2(torch.nn.Module):
|
230 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
231 |
+
super(ResBlock2, self).__init__()
|
232 |
+
self.convs = nn.ModuleList([
|
233 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
234 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
236 |
+
padding=get_padding(kernel_size, dilation[1])))
|
237 |
+
])
|
238 |
+
self.convs.apply(init_weights)
|
239 |
+
|
240 |
+
def forward(self, x, x_mask=None):
|
241 |
+
for c in self.convs:
|
242 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
243 |
+
if x_mask is not None:
|
244 |
+
xt = xt * x_mask
|
245 |
+
xt = c(xt)
|
246 |
+
x = xt + x
|
247 |
+
if x_mask is not None:
|
248 |
+
x = x * x_mask
|
249 |
+
return x
|
250 |
+
|
251 |
+
def remove_weight_norm(self):
|
252 |
+
for l in self.convs:
|
253 |
+
remove_weight_norm(l)
|
254 |
+
|
255 |
+
|
256 |
+
class Log(nn.Module):
|
257 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
258 |
+
if not reverse:
|
259 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
260 |
+
logdet = torch.sum(-y, [1, 2])
|
261 |
+
return y, logdet
|
262 |
+
else:
|
263 |
+
x = torch.exp(x) * x_mask
|
264 |
+
return x
|
265 |
+
|
266 |
+
|
267 |
+
class Flip(nn.Module):
|
268 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
269 |
+
x = torch.flip(x, [1])
|
270 |
+
if not reverse:
|
271 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
272 |
+
return x, logdet
|
273 |
+
else:
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class ElementwiseAffine(nn.Module):
|
278 |
+
def __init__(self, channels):
|
279 |
+
super().__init__()
|
280 |
+
self.channels = channels
|
281 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
282 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
283 |
+
|
284 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
285 |
+
if not reverse:
|
286 |
+
y = self.m + torch.exp(self.logs) * x
|
287 |
+
y = y * x_mask
|
288 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
289 |
+
return y, logdet
|
290 |
+
else:
|
291 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
292 |
+
return x
|
293 |
+
|
294 |
+
|
295 |
+
class ResidualCouplingLayer(nn.Module):
|
296 |
+
def __init__(self,
|
297 |
+
channels,
|
298 |
+
hidden_channels,
|
299 |
+
kernel_size,
|
300 |
+
dilation_rate,
|
301 |
+
n_layers,
|
302 |
+
p_dropout=0,
|
303 |
+
gin_channels=0,
|
304 |
+
mean_only=False):
|
305 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
306 |
+
super().__init__()
|
307 |
+
self.channels = channels
|
308 |
+
self.hidden_channels = hidden_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.dilation_rate = dilation_rate
|
311 |
+
self.n_layers = n_layers
|
312 |
+
self.half_channels = channels // 2
|
313 |
+
self.mean_only = mean_only
|
314 |
+
|
315 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
316 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
317 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
318 |
+
self.post.weight.data.zero_()
|
319 |
+
self.post.bias.data.zero_()
|
320 |
+
|
321 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
322 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
323 |
+
h = self.pre(x0) * x_mask
|
324 |
+
h = self.enc(h, x_mask, g=g)
|
325 |
+
stats = self.post(h) * x_mask
|
326 |
+
if not self.mean_only:
|
327 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
328 |
+
else:
|
329 |
+
m = stats
|
330 |
+
logs = torch.zeros_like(m)
|
331 |
+
|
332 |
+
if not reverse:
|
333 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
334 |
+
x = torch.cat([x0, x1], 1)
|
335 |
+
logdet = torch.sum(logs, [1,2])
|
336 |
+
return x, logdet
|
337 |
+
else:
|
338 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
339 |
+
x = torch.cat([x0, x1], 1)
|
340 |
+
return x
|
341 |
+
|
342 |
+
|
343 |
+
class ConvFlow(nn.Module):
|
344 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
345 |
+
super().__init__()
|
346 |
+
self.in_channels = in_channels
|
347 |
+
self.filter_channels = filter_channels
|
348 |
+
self.kernel_size = kernel_size
|
349 |
+
self.n_layers = n_layers
|
350 |
+
self.num_bins = num_bins
|
351 |
+
self.tail_bound = tail_bound
|
352 |
+
self.half_channels = in_channels // 2
|
353 |
+
|
354 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
355 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
356 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
357 |
+
self.proj.weight.data.zero_()
|
358 |
+
self.proj.bias.data.zero_()
|
359 |
+
|
360 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
361 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
362 |
+
h = self.pre(x0)
|
363 |
+
h = self.convs(h, x_mask, g=g)
|
364 |
+
h = self.proj(h) * x_mask
|
365 |
+
|
366 |
+
b, c, t = x0.shape
|
367 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
368 |
+
|
369 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
370 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
371 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
372 |
+
|
373 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
374 |
+
unnormalized_widths,
|
375 |
+
unnormalized_heights,
|
376 |
+
unnormalized_derivatives,
|
377 |
+
inverse=reverse,
|
378 |
+
tails='linear',
|
379 |
+
tail_bound=self.tail_bound
|
380 |
+
)
|
381 |
+
|
382 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
383 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
384 |
+
if not reverse:
|
385 |
+
return x, logdet
|
386 |
+
else:
|
387 |
+
return x
|
muse_tricolor_b.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"data":{"add_blank":true,"cleaned_text":true,"cleaners":["custom_cleaners"],"filter_length":1024,"hop_length":256,"max_wav_value":32768.0,"mel_fmax":null,"mel_fmin":0.0,"n_mel_channels":80,"n_speakers":12,"sampling_rate":22050,"text_cleaners":["zh_ja_mixture_cleaners"],"training_files":"/root/content/vits/filelists/muse_tricolor_train.txt.cleaned","validation_files":"/root/content/vits/filelists/muse_tricolor_val.txt.cleaned","win_length":1024},"model":{"filter_channels":768,"gin_channels":256,"hidden_channels":192,"inter_channels":192,"kernel_size":3,"n_heads":2,"n_layers":6,"n_layers_q":3,"p_dropout":0.1,"resblock":"1","resblock_dilation_sizes":[[1,3,5],[1,3,5],[1,3,5]],"resblock_kernel_sizes":[3,7,11],"upsample_initial_channel":512,"upsample_kernel_sizes":[16,16,4,4],"upsample_rates":[8,8,2,2],"use_spectral_norm":false},"speakers":["Minami Kotori","Sonoda Umi","Koizumi Hanayo","Hoshizora Rin","Tojo Nozomi","Yazawa Nico","Ayase Eli","Nishikino Maki","Kosaka Honoka","WenZhi","MoXiaoju","Biaobei"],"symbols":["_",",",".","!","?","\u2026","~","_",".","!","?","-","~","\u2026","A","E","I","N","O","Q","U","a","b","d","e","f","g","h","i","j","k","l","m","n","o","p","r","s","t","u","v","w","y","z","\u0283","\u02a7","\u02a6","\u026f","\u0279","\u0259","\u0265","\u207c","\u02b0","`","\u2192","\u2193","\u2191"," "],"train":{"batch_size":32,"betas":[0.8,0.99],"c_kl":1.0,"c_mel":45,"epochs":1200,"eps":1e-09,"eval_interval":10000,"fp16_run":true,"init_lr_ratio":1,"learning_rate":0.0002,"log_interval":200,"lr_decay":0.999875,"seed":1234,"segment_size":8192,"warmup_epochs":0}}
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython==0.29.21
|
2 |
+
librosa==0.8.0
|
3 |
+
matplotlib==3.3.1
|
4 |
+
numpy==1.21.6
|
5 |
+
phonemizer==2.2.1
|
6 |
+
scipy==1.5.2
|
7 |
+
tensorboard==2.3.0
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
Unidecode==1.1.1
|
11 |
+
pyopenjtalk==0.2.0
|
12 |
+
jamo==0.4.1
|
13 |
+
pypinyin==0.44.0
|
14 |
+
jieba==0.42.1
|
15 |
+
cn2an==0.5.17
|
16 |
+
jieba==0.42.1
|
17 |
+
ipython==7.34.0
|
18 |
+
gradio==3.4.1
|
text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
|
4 |
+
|
5 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
6 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
+
Args:
|
8 |
+
text: string to convert to a sequence
|
9 |
+
cleaner_names: names of the cleaner functions to run the text through
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
'''
|
13 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
+
|
15 |
+
sequence = []
|
16 |
+
|
17 |
+
clean_text = _clean_text(text, cleaner_names)
|
18 |
+
for symbol in clean_text:
|
19 |
+
if symbol not in _symbol_to_id.keys():
|
20 |
+
continue
|
21 |
+
symbol_id = _symbol_to_id[symbol]
|
22 |
+
sequence += [symbol_id]
|
23 |
+
return sequence
|
24 |
+
|
25 |
+
|
26 |
+
def _clean_text(text, cleaner_names):
|
27 |
+
for name in cleaner_names:
|
28 |
+
cleaner = getattr(cleaners, name)
|
29 |
+
if not cleaner:
|
30 |
+
raise Exception('Unknown cleaner: %s' % name)
|
31 |
+
text = cleaner(text)
|
32 |
+
return text
|
text/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (1.21 kB). View file
|
|
text/__pycache__/cleaners.cpython-37.pyc
ADDED
Binary file (2.97 kB). View file
|
|
text/__pycache__/japanese.cpython-37.pyc
ADDED
Binary file (3.64 kB). View file
|
|
text/__pycache__/mandarin.cpython-37.pyc
ADDED
Binary file (4.6 kB). View file
|
|
text/__pycache__/tz
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
s
|
text/cleaners.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
|
4 |
+
def japanese_cleaners(text):
|
5 |
+
from text.japanese import japanese_to_romaji_with_accent
|
6 |
+
text = japanese_to_romaji_with_accent(text)
|
7 |
+
if re.match('[A-Za-z]', text[-1]):
|
8 |
+
text += '.'
|
9 |
+
return text
|
10 |
+
|
11 |
+
|
12 |
+
def japanese_cleaners2(text):
|
13 |
+
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
14 |
+
|
15 |
+
|
16 |
+
def korean_cleaners(text):
|
17 |
+
'''Pipeline for Korean text'''
|
18 |
+
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
|
19 |
+
text = latin_to_hangul(text)
|
20 |
+
text = number_to_hangul(text)
|
21 |
+
text = divide_hangul(text)
|
22 |
+
if re.match('[\u3131-\u3163]', text[-1]):
|
23 |
+
text += '.'
|
24 |
+
return text
|
25 |
+
|
26 |
+
|
27 |
+
def chinese_cleaners(text):
|
28 |
+
'''Pipeline for Chinese text'''
|
29 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
|
30 |
+
text = number_to_chinese(text)
|
31 |
+
text = chinese_to_bopomofo(text)
|
32 |
+
text = latin_to_bopomofo(text)
|
33 |
+
if re.match('[ˉˊˇˋ˙]', text[-1]):
|
34 |
+
text += '。'
|
35 |
+
return text
|
36 |
+
|
37 |
+
|
38 |
+
def zh_ja_mixture_cleaners(text):
|
39 |
+
from text.mandarin import chinese_to_romaji
|
40 |
+
from text.japanese import japanese_to_romaji_with_accent
|
41 |
+
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
42 |
+
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
43 |
+
for chinese_text in chinese_texts:
|
44 |
+
cleaned_text = chinese_to_romaji(chinese_text[4:-4])
|
45 |
+
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
46 |
+
for japanese_text in japanese_texts:
|
47 |
+
cleaned_text = japanese_to_romaji_with_accent(
|
48 |
+
japanese_text[4:-4]).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')
|
49 |
+
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
50 |
+
text = text[:-1]
|
51 |
+
if re.match('[A-Za-zɯɹəɥ→↓↑]', text[-1]):
|
52 |
+
text += '.'
|
53 |
+
return text
|
54 |
+
|
55 |
+
|
56 |
+
def sanskrit_cleaners(text):
|
57 |
+
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
58 |
+
if text[-1] != '।':
|
59 |
+
text += ' ।'
|
60 |
+
return text
|
61 |
+
|
62 |
+
|
63 |
+
def cjks_cleaners(text):
|
64 |
+
from text.mandarin import chinese_to_lazy_ipa
|
65 |
+
from text.japanese import japanese_to_ipa
|
66 |
+
from text.korean import korean_to_lazy_ipa
|
67 |
+
from text.sanskrit import devanagari_to_ipa
|
68 |
+
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
69 |
+
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
70 |
+
korean_texts = re.findall(r'\[KO\].*?\[KO\]', text)
|
71 |
+
sanskrit_texts = re.findall(r'\[SA\].*?\[SA\]', text)
|
72 |
+
for chinese_text in chinese_texts:
|
73 |
+
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
74 |
+
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
75 |
+
for japanese_text in japanese_texts:
|
76 |
+
cleaned_text = japanese_to_ipa(japanese_text[4:-4])
|
77 |
+
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
78 |
+
for korean_text in korean_texts:
|
79 |
+
cleaned_text = korean_to_lazy_ipa(korean_text[4:-4])
|
80 |
+
text = text.replace(korean_text, cleaned_text+' ', 1)
|
81 |
+
for sanskrit_text in sanskrit_texts:
|
82 |
+
cleaned_text = devanagari_to_ipa(sanskrit_text[4:-4])
|
83 |
+
text = text.replace(sanskrit_text, cleaned_text+' ', 1)
|
84 |
+
text = text[:-1]
|
85 |
+
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
86 |
+
text += '.'
|
87 |
+
return text
|
text/japanese.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import pyopenjtalk
|
4 |
+
|
5 |
+
|
6 |
+
# Regular expression matching Japanese without punctuation marks:
|
7 |
+
_japanese_characters = re.compile(
|
8 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
9 |
+
|
10 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
11 |
+
_japanese_marks = re.compile(
|
12 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
13 |
+
|
14 |
+
# List of (symbol, Japanese) pairs for marks:
|
15 |
+
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
16 |
+
('%', 'パーセント')
|
17 |
+
]]
|
18 |
+
|
19 |
+
# List of (romaji, ipa) pairs for marks:
|
20 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
21 |
+
('ts', 'ʦ'),
|
22 |
+
('u', 'ɯ'),
|
23 |
+
('...', '…'),
|
24 |
+
('j', 'ʥ'),
|
25 |
+
('y', 'j'),
|
26 |
+
('ni', 'n^i'),
|
27 |
+
('nj', 'n^'),
|
28 |
+
('hi', 'çi'),
|
29 |
+
('hj', 'ç'),
|
30 |
+
('f', 'ɸ'),
|
31 |
+
('I', 'i*'),
|
32 |
+
('U', 'ɯ*'),
|
33 |
+
('r', 'ɾ')
|
34 |
+
]]
|
35 |
+
|
36 |
+
# Dictinary of (consonant, sokuon) pairs:
|
37 |
+
_real_sokuon = {
|
38 |
+
'k': 'k#',
|
39 |
+
'g': 'k#',
|
40 |
+
't': 't#',
|
41 |
+
'd': 't#',
|
42 |
+
'ʦ': 't#',
|
43 |
+
'ʧ': 't#',
|
44 |
+
'ʥ': 't#',
|
45 |
+
'j': 't#',
|
46 |
+
's': 's',
|
47 |
+
'ʃ': 's',
|
48 |
+
'p': 'p#',
|
49 |
+
'b': 'p#'
|
50 |
+
}
|
51 |
+
|
52 |
+
# Dictinary of (consonant, hatsuon) pairs:
|
53 |
+
_real_hatsuon = {
|
54 |
+
'p': 'm',
|
55 |
+
'b': 'm',
|
56 |
+
'm': 'm',
|
57 |
+
't': 'n',
|
58 |
+
'd': 'n',
|
59 |
+
'n': 'n',
|
60 |
+
'ʧ': 'n^',
|
61 |
+
'ʥ': 'n^',
|
62 |
+
'k': 'ŋ',
|
63 |
+
'g': 'ŋ'
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def symbols_to_japanese(text):
|
68 |
+
for regex, replacement in _symbols_to_japanese:
|
69 |
+
text = re.sub(regex, replacement, text)
|
70 |
+
return text
|
71 |
+
|
72 |
+
|
73 |
+
def japanese_to_romaji_with_accent(text):
|
74 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
75 |
+
text = symbols_to_japanese(text)
|
76 |
+
sentences = re.split(_japanese_marks, text)
|
77 |
+
marks = re.findall(_japanese_marks, text)
|
78 |
+
text = ''
|
79 |
+
for i, sentence in enumerate(sentences):
|
80 |
+
if re.match(_japanese_characters, sentence):
|
81 |
+
if text != '':
|
82 |
+
text += ' '
|
83 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
84 |
+
for n, label in enumerate(labels):
|
85 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
86 |
+
if phoneme not in ['sil', 'pau']:
|
87 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh',
|
88 |
+
'ʃ').replace('cl', 'Q')
|
89 |
+
else:
|
90 |
+
continue
|
91 |
+
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
92 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
93 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
94 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
95 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
96 |
+
a2_next = -1
|
97 |
+
else:
|
98 |
+
a2_next = int(
|
99 |
+
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
100 |
+
# Accent phrase boundary
|
101 |
+
if a3 == 1 and a2_next == 1:
|
102 |
+
text += ' '
|
103 |
+
# Falling
|
104 |
+
elif a1 == 0 and a2_next == a2 + 1:
|
105 |
+
text += '↓'
|
106 |
+
# Rising
|
107 |
+
elif a2 == 1 and a2_next == 2:
|
108 |
+
text += '↑'
|
109 |
+
if i < len(marks):
|
110 |
+
text += unidecode(marks[i]).replace(' ', '')
|
111 |
+
return text
|
112 |
+
|
113 |
+
|
114 |
+
def get_real_sokuon(text):
|
115 |
+
text=re.sub('Q[↑↓]*(.)',lambda x:_real_sokuon[x.group(1)]+x.group(0)[1:] if x.group(1) in _real_sokuon.keys() else x.group(0),text)
|
116 |
+
return text
|
117 |
+
|
118 |
+
|
119 |
+
def get_real_hatsuon(text):
|
120 |
+
text=re.sub('N[↑↓]*(.)',lambda x:_real_hatsuon[x.group(1)]+x.group(0)[1:] if x.group(1) in _real_hatsuon.keys() else x.group(0),text)
|
121 |
+
return text
|
122 |
+
|
123 |
+
|
124 |
+
def japanese_to_ipa(text):
|
125 |
+
text=japanese_to_romaji_with_accent(text)
|
126 |
+
for regex, replacement in _romaji_to_ipa:
|
127 |
+
text = re.sub(regex, replacement, text)
|
128 |
+
text = re.sub(
|
129 |
+
r'([A-Za-zɯ])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
130 |
+
text = get_real_sokuon(text)
|
131 |
+
text = get_real_hatsuon(text)
|
132 |
+
return text
|
text/korean.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from jamo import h2j, j2hcj
|
3 |
+
import ko_pron
|
4 |
+
|
5 |
+
|
6 |
+
# This is a list of Korean classifiers preceded by pure Korean numerals.
|
7 |
+
_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
|
8 |
+
|
9 |
+
# List of (hangul, hangul divided) pairs:
|
10 |
+
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
|
11 |
+
('ㄳ', 'ㄱㅅ'),
|
12 |
+
('ㄵ', 'ㄴㅈ'),
|
13 |
+
('ㄶ', 'ㄴㅎ'),
|
14 |
+
('ㄺ', 'ㄹㄱ'),
|
15 |
+
('ㄻ', 'ㄹㅁ'),
|
16 |
+
('ㄼ', 'ㄹㅂ'),
|
17 |
+
('ㄽ', 'ㄹㅅ'),
|
18 |
+
('ㄾ', 'ㄹㅌ'),
|
19 |
+
('ㄿ', 'ㄹㅍ'),
|
20 |
+
('ㅀ', 'ㄹㅎ'),
|
21 |
+
('ㅄ', 'ㅂㅅ'),
|
22 |
+
('ㅘ', 'ㅗㅏ'),
|
23 |
+
('ㅙ', 'ㅗㅐ'),
|
24 |
+
('ㅚ', 'ㅗㅣ'),
|
25 |
+
('ㅝ', 'ㅜㅓ'),
|
26 |
+
('ㅞ', 'ㅜㅔ'),
|
27 |
+
('ㅟ', 'ㅜㅣ'),
|
28 |
+
('ㅢ', 'ㅡㅣ'),
|
29 |
+
('ㅑ', 'ㅣㅏ'),
|
30 |
+
('ㅒ', 'ㅣㅐ'),
|
31 |
+
('ㅕ', 'ㅣㅓ'),
|
32 |
+
('ㅖ', 'ㅣㅔ'),
|
33 |
+
('ㅛ', 'ㅣㅗ'),
|
34 |
+
('ㅠ', 'ㅣㅜ')
|
35 |
+
]]
|
36 |
+
|
37 |
+
# List of (Latin alphabet, hangul) pairs:
|
38 |
+
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
39 |
+
('a', '에이'),
|
40 |
+
('b', '비'),
|
41 |
+
('c', '시'),
|
42 |
+
('d', '디'),
|
43 |
+
('e', '이'),
|
44 |
+
('f', '에프'),
|
45 |
+
('g', '지'),
|
46 |
+
('h', '에이치'),
|
47 |
+
('i', '아이'),
|
48 |
+
('j', '제이'),
|
49 |
+
('k', '케이'),
|
50 |
+
('l', '엘'),
|
51 |
+
('m', '엠'),
|
52 |
+
('n', '엔'),
|
53 |
+
('o', '오'),
|
54 |
+
('p', '피'),
|
55 |
+
('q', '큐'),
|
56 |
+
('r', '아르'),
|
57 |
+
('s', '에스'),
|
58 |
+
('t', '티'),
|
59 |
+
('u', '유'),
|
60 |
+
('v', '브이'),
|
61 |
+
('w', '더블유'),
|
62 |
+
('x', '엑스'),
|
63 |
+
('y', '와이'),
|
64 |
+
('z', '제트')
|
65 |
+
]]
|
66 |
+
|
67 |
+
# List of (ipa, lazy ipa) pairs:
|
68 |
+
_ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
69 |
+
('t͡ɕ','ʧ'),
|
70 |
+
('d͡ʑ','ʥ'),
|
71 |
+
('ɲ','n^'),
|
72 |
+
('ɕ','ʃ'),
|
73 |
+
('ʷ','w'),
|
74 |
+
('ɭ','l`'),
|
75 |
+
('ʎ','ɾ'),
|
76 |
+
('ɣ','ŋ'),
|
77 |
+
('ɰ','ɯ'),
|
78 |
+
('ʝ','j'),
|
79 |
+
('ʌ','ə'),
|
80 |
+
('ɡ','g'),
|
81 |
+
('\u031a','#'),
|
82 |
+
('\u0348','='),
|
83 |
+
('\u031e',''),
|
84 |
+
('\u0320',''),
|
85 |
+
('\u0339','')
|
86 |
+
]]
|
87 |
+
|
88 |
+
|
89 |
+
def latin_to_hangul(text):
|
90 |
+
for regex, replacement in _latin_to_hangul:
|
91 |
+
text = re.sub(regex, replacement, text)
|
92 |
+
return text
|
93 |
+
|
94 |
+
|
95 |
+
def divide_hangul(text):
|
96 |
+
text = j2hcj(h2j(text))
|
97 |
+
for regex, replacement in _hangul_divided:
|
98 |
+
text = re.sub(regex, replacement, text)
|
99 |
+
return text
|
100 |
+
|
101 |
+
|
102 |
+
def hangul_number(num, sino=True):
|
103 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
104 |
+
num = re.sub(',', '', num)
|
105 |
+
|
106 |
+
if num == '0':
|
107 |
+
return '영'
|
108 |
+
if not sino and num == '20':
|
109 |
+
return '스무'
|
110 |
+
|
111 |
+
digits = '123456789'
|
112 |
+
names = '일이삼사오육칠팔구'
|
113 |
+
digit2name = {d: n for d, n in zip(digits, names)}
|
114 |
+
|
115 |
+
modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
|
116 |
+
decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
|
117 |
+
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
|
118 |
+
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
|
119 |
+
|
120 |
+
spelledout = []
|
121 |
+
for i, digit in enumerate(num):
|
122 |
+
i = len(num) - i - 1
|
123 |
+
if sino:
|
124 |
+
if i == 0:
|
125 |
+
name = digit2name.get(digit, '')
|
126 |
+
elif i == 1:
|
127 |
+
name = digit2name.get(digit, '') + '십'
|
128 |
+
name = name.replace('일십', '십')
|
129 |
+
else:
|
130 |
+
if i == 0:
|
131 |
+
name = digit2mod.get(digit, '')
|
132 |
+
elif i == 1:
|
133 |
+
name = digit2dec.get(digit, '')
|
134 |
+
if digit == '0':
|
135 |
+
if i % 4 == 0:
|
136 |
+
last_three = spelledout[-min(3, len(spelledout)):]
|
137 |
+
if ''.join(last_three) == '':
|
138 |
+
spelledout.append('')
|
139 |
+
continue
|
140 |
+
else:
|
141 |
+
spelledout.append('')
|
142 |
+
continue
|
143 |
+
if i == 2:
|
144 |
+
name = digit2name.get(digit, '') + '백'
|
145 |
+
name = name.replace('일백', '백')
|
146 |
+
elif i == 3:
|
147 |
+
name = digit2name.get(digit, '') + '천'
|
148 |
+
name = name.replace('일천', '천')
|
149 |
+
elif i == 4:
|
150 |
+
name = digit2name.get(digit, '') + '만'
|
151 |
+
name = name.replace('일만', '만')
|
152 |
+
elif i == 5:
|
153 |
+
name = digit2name.get(digit, '') + '십'
|
154 |
+
name = name.replace('일십', '십')
|
155 |
+
elif i == 6:
|
156 |
+
name = digit2name.get(digit, '') + '백'
|
157 |
+
name = name.replace('일백', '백')
|
158 |
+
elif i == 7:
|
159 |
+
name = digit2name.get(digit, '') + '천'
|
160 |
+
name = name.replace('일천', '천')
|
161 |
+
elif i == 8:
|
162 |
+
name = digit2name.get(digit, '') + '억'
|
163 |
+
elif i == 9:
|
164 |
+
name = digit2name.get(digit, '') + '십'
|
165 |
+
elif i == 10:
|
166 |
+
name = digit2name.get(digit, '') + '백'
|
167 |
+
elif i == 11:
|
168 |
+
name = digit2name.get(digit, '') + '천'
|
169 |
+
elif i == 12:
|
170 |
+
name = digit2name.get(digit, '') + '조'
|
171 |
+
elif i == 13:
|
172 |
+
name = digit2name.get(digit, '') + '십'
|
173 |
+
elif i == 14:
|
174 |
+
name = digit2name.get(digit, '') + '백'
|
175 |
+
elif i == 15:
|
176 |
+
name = digit2name.get(digit, '') + '천'
|
177 |
+
spelledout.append(name)
|
178 |
+
return ''.join(elem for elem in spelledout)
|
179 |
+
|
180 |
+
|
181 |
+
def number_to_hangul(text):
|
182 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
183 |
+
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
|
184 |
+
for token in tokens:
|
185 |
+
num, classifier = token
|
186 |
+
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
|
187 |
+
spelledout = hangul_number(num, sino=False)
|
188 |
+
else:
|
189 |
+
spelledout = hangul_number(num, sino=True)
|
190 |
+
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
|
191 |
+
# digit by digit for remaining digits
|
192 |
+
digits = '0123456789'
|
193 |
+
names = '영일이삼사오육칠팔구'
|
194 |
+
for d, n in zip(digits, names):
|
195 |
+
text = text.replace(d, n)
|
196 |
+
return text
|
197 |
+
|
198 |
+
|
199 |
+
def korean_to_lazy_ipa(text):
|
200 |
+
text = latin_to_hangul(text)
|
201 |
+
text = number_to_hangul(text)
|
202 |
+
text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa'),text).split('] ~ [')[0]
|
203 |
+
for regex, replacement in _ipa_to_lazy_ipa:
|
204 |
+
text = re.sub(regex, replacement, text)
|
205 |
+
return text
|
text/mandarin.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import jieba
|
6 |
+
import cn2an
|
7 |
+
import logging
|
8 |
+
from pypinyin import lazy_pinyin, BOPOMOFO
|
9 |
+
|
10 |
+
logging.getLogger('jieba').setLevel(logging.WARNING)
|
11 |
+
|
12 |
+
|
13 |
+
# List of (Latin alphabet, bopomofo) pairs:
|
14 |
+
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
15 |
+
('a', 'ㄟˉ'),
|
16 |
+
('b', 'ㄅㄧˋ'),
|
17 |
+
('c', 'ㄙㄧˉ'),
|
18 |
+
('d', 'ㄉㄧˋ'),
|
19 |
+
('e', 'ㄧˋ'),
|
20 |
+
('f', 'ㄝˊㄈㄨˋ'),
|
21 |
+
('g', 'ㄐㄧˋ'),
|
22 |
+
('h', 'ㄝˇㄑㄩˋ'),
|
23 |
+
('i', 'ㄞˋ'),
|
24 |
+
('j', 'ㄐㄟˋ'),
|
25 |
+
('k', 'ㄎㄟˋ'),
|
26 |
+
('l', 'ㄝˊㄛˋ'),
|
27 |
+
('m', 'ㄝˊㄇㄨˋ'),
|
28 |
+
('n', 'ㄣˉ'),
|
29 |
+
('o', 'ㄡˉ'),
|
30 |
+
('p', 'ㄆㄧˉ'),
|
31 |
+
('q', 'ㄎㄧㄡˉ'),
|
32 |
+
('r', 'ㄚˋ'),
|
33 |
+
('s', 'ㄝˊㄙˋ'),
|
34 |
+
('t', 'ㄊㄧˋ'),
|
35 |
+
('u', 'ㄧㄡˉ'),
|
36 |
+
('v', 'ㄨㄧˉ'),
|
37 |
+
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
|
38 |
+
('x', 'ㄝˉㄎㄨˋㄙˋ'),
|
39 |
+
('y', 'ㄨㄞˋ'),
|
40 |
+
('z', 'ㄗㄟˋ')
|
41 |
+
]]
|
42 |
+
|
43 |
+
# List of (bopomofo, romaji) pairs:
|
44 |
+
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
|
45 |
+
('ㄅㄛ', 'p⁼wo'),
|
46 |
+
('ㄆㄛ', 'pʰwo'),
|
47 |
+
('ㄇㄛ', 'mwo'),
|
48 |
+
('ㄈㄛ', 'fwo'),
|
49 |
+
('ㄅ', 'p⁼'),
|
50 |
+
('ㄆ', 'pʰ'),
|
51 |
+
('ㄇ', 'm'),
|
52 |
+
('ㄈ', 'f'),
|
53 |
+
('ㄉ', 't⁼'),
|
54 |
+
('ㄊ', 'tʰ'),
|
55 |
+
('ㄋ', 'n'),
|
56 |
+
('ㄌ', 'l'),
|
57 |
+
('ㄍ', 'k⁼'),
|
58 |
+
('ㄎ', 'kʰ'),
|
59 |
+
('ㄏ', 'h'),
|
60 |
+
('ㄐ', 'ʧ⁼'),
|
61 |
+
('ㄑ', 'ʧʰ'),
|
62 |
+
('ㄒ', 'ʃ'),
|
63 |
+
('ㄓ', 'ʦ`⁼'),
|
64 |
+
('ㄔ', 'ʦ`ʰ'),
|
65 |
+
('ㄕ', 's`'),
|
66 |
+
('ㄖ', 'ɹ`'),
|
67 |
+
('ㄗ', 'ʦ⁼'),
|
68 |
+
('ㄘ', 'ʦʰ'),
|
69 |
+
('ㄙ', 's'),
|
70 |
+
('ㄚ', 'a'),
|
71 |
+
('ㄛ', 'o'),
|
72 |
+
('ㄜ', 'ə'),
|
73 |
+
('ㄝ', 'e'),
|
74 |
+
('ㄞ', 'ai'),
|
75 |
+
('ㄟ', 'ei'),
|
76 |
+
('ㄠ', 'au'),
|
77 |
+
('ㄡ', 'ou'),
|
78 |
+
('ㄧㄢ', 'yeNN'),
|
79 |
+
('ㄢ', 'aNN'),
|
80 |
+
('ㄧㄣ', 'iNN'),
|
81 |
+
('ㄣ', 'əNN'),
|
82 |
+
('ㄤ', 'aNg'),
|
83 |
+
('ㄧㄥ', 'iNg'),
|
84 |
+
('ㄨㄥ', 'uNg'),
|
85 |
+
('ㄩㄥ', 'yuNg'),
|
86 |
+
('ㄥ', 'əNg'),
|
87 |
+
('ㄦ', 'əɻ'),
|
88 |
+
('ㄧ', 'i'),
|
89 |
+
('ㄨ', 'u'),
|
90 |
+
('ㄩ', 'ɥ'),
|
91 |
+
('ˉ', '→'),
|
92 |
+
('ˊ', '↑'),
|
93 |
+
('ˇ', '↓↑'),
|
94 |
+
('ˋ', '↓'),
|
95 |
+
('˙', ''),
|
96 |
+
(',', ','),
|
97 |
+
('。', '.'),
|
98 |
+
('!', '!'),
|
99 |
+
('?', '?'),
|
100 |
+
('—', '-')
|
101 |
+
]]
|
102 |
+
|
103 |
+
# List of (romaji, ipa) pairs:
|
104 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
105 |
+
('ʃy', 'ʃ'),
|
106 |
+
('ʧʰy', 'ʧʰ'),
|
107 |
+
('ʧ⁼y', 'ʧ⁼'),
|
108 |
+
('NN', 'n'),
|
109 |
+
('Ng', 'ŋ'),
|
110 |
+
('y', 'j'),
|
111 |
+
('h', 'x')
|
112 |
+
]]
|
113 |
+
|
114 |
+
|
115 |
+
def number_to_chinese(text):
|
116 |
+
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
117 |
+
for number in numbers:
|
118 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
119 |
+
return text
|
120 |
+
|
121 |
+
|
122 |
+
def chinese_to_bopomofo(text):
|
123 |
+
text = text.replace('、', ',').replace(';', ',').replace(':', ',')
|
124 |
+
words = jieba.lcut(text, cut_all=False)
|
125 |
+
text = ''
|
126 |
+
for word in words:
|
127 |
+
bopomofos = lazy_pinyin(word, BOPOMOFO)
|
128 |
+
if not re.search('[\u4e00-\u9fff]', word):
|
129 |
+
text += word
|
130 |
+
continue
|
131 |
+
for i in range(len(bopomofos)):
|
132 |
+
if re.match('[\u3105-\u3129]', bopomofos[i][-1]):
|
133 |
+
bopomofos[i] += 'ˉ'
|
134 |
+
if text != '':
|
135 |
+
text += ' '
|
136 |
+
text += ''.join(bopomofos)
|
137 |
+
return text
|
138 |
+
|
139 |
+
|
140 |
+
def latin_to_bopomofo(text):
|
141 |
+
for regex, replacement in _latin_to_bopomofo:
|
142 |
+
text = re.sub(regex, replacement, text)
|
143 |
+
return text
|
144 |
+
|
145 |
+
|
146 |
+
def bopomofo_to_romaji(text):
|
147 |
+
for regex, replacement in _bopomofo_to_romaji:
|
148 |
+
text = re.sub(regex, replacement, text)
|
149 |
+
return text
|
150 |
+
|
151 |
+
|
152 |
+
def chinese_to_romaji(text):
|
153 |
+
text = number_to_chinese(text)
|
154 |
+
text = chinese_to_bopomofo(text)
|
155 |
+
text = latin_to_bopomofo(text)
|
156 |
+
text = bopomofo_to_romaji(text)
|
157 |
+
text = re.sub('i[aoe]', lambda x: 'y' + x.group(0)[1:], text)
|
158 |
+
text = re.sub('u[aoəe]', lambda x: 'w' + x.group(0)[1:], text)
|
159 |
+
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)', lambda x: x.group(1) +
|
160 |
+
'ɹ`' + x.group(2), text).replace('ɻ', 'ɹ`')
|
161 |
+
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)',
|
162 |
+
lambda x: x.group(1) + 'ɹ' + x.group(2), text)
|
163 |
+
return text
|
164 |
+
|
165 |
+
|
166 |
+
def chinese_to_lazy_ipa(text):
|
167 |
+
text = chinese_to_romaji(text)
|
168 |
+
for regex, replacement in _romaji_to_ipa:
|
169 |
+
text = re.sub(regex, replacement, text)
|
170 |
+
return text
|
text/sanskrit.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from indic_transliteration import sanscript
|
3 |
+
|
4 |
+
|
5 |
+
# List of (iast, ipa) pairs:
|
6 |
+
_iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
7 |
+
('a', 'ə'),
|
8 |
+
('ā', 'aː'),
|
9 |
+
('ī', 'iː'),
|
10 |
+
('ū', 'uː'),
|
11 |
+
('ṛ', 'ɹ`'),
|
12 |
+
('ṝ', 'ɹ`ː'),
|
13 |
+
('ḷ', 'l`'),
|
14 |
+
('ḹ', 'l`ː'),
|
15 |
+
('e', 'eː'),
|
16 |
+
('o', 'oː'),
|
17 |
+
('k', 'k⁼'),
|
18 |
+
('k⁼h', 'kʰ'),
|
19 |
+
('g', 'g⁼'),
|
20 |
+
('g⁼h', 'gʰ'),
|
21 |
+
('ṅ', 'ŋ'),
|
22 |
+
('c', 'ʧ⁼'),
|
23 |
+
('ʧ⁼h', 'ʧʰ'),
|
24 |
+
('j', 'ʥ⁼'),
|
25 |
+
('ʥ⁼h', 'ʥʰ'),
|
26 |
+
('ñ', 'n^'),
|
27 |
+
('ṭ', 't`⁼'),
|
28 |
+
('t`⁼h', 't`ʰ'),
|
29 |
+
('ḍ', 'd`⁼'),
|
30 |
+
('d`⁼h', 'd`ʰ'),
|
31 |
+
('ṇ', 'n`'),
|
32 |
+
('t', 't⁼'),
|
33 |
+
('t⁼h', 'tʰ'),
|
34 |
+
('d', 'd⁼'),
|
35 |
+
('d⁼h', 'dʰ'),
|
36 |
+
('p', 'p⁼'),
|
37 |
+
('p⁼h', 'pʰ'),
|
38 |
+
('b', 'b⁼'),
|
39 |
+
('b⁼h', 'bʰ'),
|
40 |
+
('y', 'j'),
|
41 |
+
('ś', 'ʃ'),
|
42 |
+
('ṣ', 's`'),
|
43 |
+
('r', 'ɾ'),
|
44 |
+
('l̤', 'l`'),
|
45 |
+
('h', 'ɦ'),
|
46 |
+
("'", ''),
|
47 |
+
('~', '^'),
|
48 |
+
('ṃ', '^')
|
49 |
+
]]
|
50 |
+
|
51 |
+
|
52 |
+
def devanagari_to_ipa(text):
|
53 |
+
text = text.replace('ॐ', 'ओम्')
|
54 |
+
text = re.sub(r'\s*।\s*$', '.', text)
|
55 |
+
text = re.sub(r'\s*।\s*', ', ', text)
|
56 |
+
text = re.sub(r'\s*॥', '.', text)
|
57 |
+
text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
|
58 |
+
for regex, replacement in _iast_to_ipa:
|
59 |
+
text = re.sub(regex, replacement, text)
|
60 |
+
text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
|
61 |
+
[:-1]+'h'+x.group(1)+'*', text)
|
62 |
+
return text
|
transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from json import loads
|
3 |
+
from torch import load, FloatTensor
|
4 |
+
from numpy import float32
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
|
8 |
+
class HParams():
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
for k, v in kwargs.items():
|
11 |
+
if type(v) == dict:
|
12 |
+
v = HParams(**v)
|
13 |
+
self[k] = v
|
14 |
+
|
15 |
+
def keys(self):
|
16 |
+
return self.__dict__.keys()
|
17 |
+
|
18 |
+
def items(self):
|
19 |
+
return self.__dict__.items()
|
20 |
+
|
21 |
+
def values(self):
|
22 |
+
return self.__dict__.values()
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.__dict__)
|
26 |
+
|
27 |
+
def __getitem__(self, key):
|
28 |
+
return getattr(self, key)
|
29 |
+
|
30 |
+
def __setitem__(self, key, value):
|
31 |
+
return setattr(self, key, value)
|
32 |
+
|
33 |
+
def __contains__(self, key):
|
34 |
+
return key in self.__dict__
|
35 |
+
|
36 |
+
def __repr__(self):
|
37 |
+
return self.__dict__.__repr__()
|
38 |
+
|
39 |
+
|
40 |
+
def load_checkpoint(checkpoint_path, model):
|
41 |
+
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
42 |
+
iteration = checkpoint_dict['iteration']
|
43 |
+
saved_state_dict = checkpoint_dict['model']
|
44 |
+
if hasattr(model, 'module'):
|
45 |
+
state_dict = model.module.state_dict()
|
46 |
+
else:
|
47 |
+
state_dict = model.state_dict()
|
48 |
+
new_state_dict = {}
|
49 |
+
for k, v in state_dict.items():
|
50 |
+
try:
|
51 |
+
new_state_dict[k] = saved_state_dict[k]
|
52 |
+
except:
|
53 |
+
logging.info("%s is not in the checkpoint" % k)
|
54 |
+
new_state_dict[k] = v
|
55 |
+
pass
|
56 |
+
if hasattr(model, 'module'):
|
57 |
+
model.module.load_state_dict(new_state_dict)
|
58 |
+
else:
|
59 |
+
model.load_state_dict(new_state_dict)
|
60 |
+
logging.info("Loaded checkpoint '{}' (iteration {})".format(
|
61 |
+
checkpoint_path, iteration))
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
def get_hparams_from_file(config_path):
|
66 |
+
with open(config_path, "r") as f:
|
67 |
+
data = f.read()
|
68 |
+
config = loads(data)
|
69 |
+
|
70 |
+
hparams = HParams(**config)
|
71 |
+
return hparams
|
72 |
+
|
73 |
+
|
74 |
+
def load_audio_to_torch(full_path, target_sampling_rate):
|
75 |
+
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
76 |
+
return FloatTensor(audio.astype(float32))
|