File size: 16,835 Bytes
2f044c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import collections
import itertools
from typing import Dict, List, Optional, Set, Tuple
from relik.inference.data.splitters.blank_sentence_splitter import BlankSentenceSplitter
from relik.inference.data.splitters.base_sentence_splitter import BaseSentenceSplitter
from relik.inference.data.tokenizers.base_tokenizer import BaseTokenizer
from relik.reader.data.relik_reader_sample import RelikReaderSample
class WindowManager:
def __init__(
self, tokenizer: BaseTokenizer, splitter: BaseSentenceSplitter | None = None
) -> None:
self.tokenizer = tokenizer
self.splitter = splitter or BlankSentenceSplitter()
def create_windows(
self,
documents: str | List[str],
window_size: int | None = None,
stride: int | None = None,
max_length: int | None = None,
doc_id: str | int | None = None,
doc_topic: str | None = None,
is_split_into_words: bool = False,
mentions: List[List[List[int]]] = None,
) -> Tuple[List[RelikReaderSample], List[RelikReaderSample]]:
"""
Create windows from a list of documents.
Args:
documents (:obj:`str` or :obj:`List[str]`):
The document(s) to split in windows.
window_size (:obj:`int`):
The size of the window.
stride (:obj:`int`):
The stride between two windows.
max_length (:obj:`int`, `optional`):
The maximum length of a window.
doc_id (:obj:`str` or :obj:`int`, `optional`):
The id of the document(s).
doc_topic (:obj:`str`, `optional`):
The topic of the document(s).
is_split_into_words (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether the input is already pre-tokenized (e.g., split into words). If :obj:`False`, the
input will first be tokenized using the tokenizer, then the tokens will be split into words.
mentions (:obj:`List[List[List[int]]]`, `optional`):
The mentions of the document(s).
Returns:
:obj:`List[RelikReaderSample]`: The windows created from the documents.
"""
# normalize input
if isinstance(documents, str) or is_split_into_words:
documents = [documents]
# batch tokenize
documents_tokens = self.tokenizer(
documents, is_split_into_words=is_split_into_words
)
# set splitter params
if hasattr(self.splitter, "window_size"):
self.splitter.window_size = window_size or self.splitter.window_size
if hasattr(self.splitter, "window_stride"):
self.splitter.window_stride = stride or self.splitter.window_stride
windowed_documents, windowed_blank_documents = [], []
if mentions is not None:
assert len(documents) == len(
mentions
), f"documents and mentions should have the same length, got {len(documents)} and {len(mentions)}"
doc_iter = zip(documents, documents_tokens, mentions)
else:
doc_iter = zip(documents, documents_tokens, itertools.repeat([]))
for infered_doc_id, (document, document_tokens, document_mentions) in enumerate(
doc_iter
):
if doc_topic is None:
doc_topic = document_tokens[0] if len(document_tokens) > 0 else ""
if doc_id is None:
doc_id = infered_doc_id
splitted_document = self.splitter(document_tokens, max_length=max_length)
document_windows = []
for window_id, window in enumerate(splitted_document):
window_text_start = window[0].idx
window_text_end = window[-1].idx + len(window[-1].text)
if isinstance(document, str):
text = document[window_text_start:window_text_end]
else:
# window_text_start = window[0].idx
# window_text_end = window[-1].i
text = " ".join([w.text for w in window])
sample = RelikReaderSample(
doc_id=doc_id,
window_id=window_id,
text=text,
tokens=[w.text for w in window],
words=[w.text for w in window],
doc_topic=doc_topic,
offset=window_text_start,
spans=[
[m[0], m[1]] for m in document_mentions
if window_text_end > m[0] >= window_text_start and window_text_end >= m[1] >= window_text_start
],
token2char_start={str(i): w.idx for i, w in enumerate(window)},
token2char_end={
str(i): w.idx + len(w.text) for i, w in enumerate(window)
},
char2token_start={
str(w.idx): w.i for i, w in enumerate(window)
},
char2token_end={
str(w.idx + len(w.text)): w.i for i, w in enumerate(window)
},
)
if mentions is not None and len(sample.spans) == 0:
windowed_blank_documents.append(sample)
else:
document_windows.append(sample)
windowed_documents.extend(document_windows)
if mentions is not None:
return windowed_documents, windowed_blank_documents
else:
return windowed_documents, windowed_blank_documents
def merge_windows(
self, windows: List[RelikReaderSample]
) -> List[RelikReaderSample]:
windows_by_doc_id = collections.defaultdict(list)
for window in windows:
windows_by_doc_id[window.doc_id].append(window)
merged_window_by_doc = {
doc_id: self._merge_doc_windows(doc_windows)
for doc_id, doc_windows in windows_by_doc_id.items()
}
return list(merged_window_by_doc.values())
def _merge_doc_windows(self, windows: List[RelikReaderSample]) -> RelikReaderSample:
if len(windows) == 1:
return windows[0]
if len(windows) > 0 and getattr(windows[0], "offset", None) is not None:
windows = sorted(windows, key=(lambda x: x.offset))
window_accumulator = windows[0]
for next_window in windows[1:]:
window_accumulator = self._merge_window_pair(
window_accumulator, next_window
)
return window_accumulator
@staticmethod
def _merge_tokens(
window1: RelikReaderSample, window2: RelikReaderSample
) -> Tuple[list, dict, dict]:
w1_tokens = window1.tokens[1:-1]
w2_tokens = window2.tokens[1:-1]
# find intersection if any
tokens_intersection = 0
for k in reversed(range(1, len(w1_tokens))):
if w1_tokens[-k:] == w2_tokens[:k]:
tokens_intersection = k
break
final_tokens = (
[window1.tokens[0]] # CLS
+ w1_tokens
+ w2_tokens[tokens_intersection:]
+ [window1.tokens[-1]] # SEP
)
w2_starting_offset = len(w1_tokens) - tokens_intersection
def merge_char_mapping(t2c1: dict, t2c2: dict) -> dict:
final_t2c = dict()
final_t2c.update(t2c1)
for t, c in t2c2.items():
t = int(t)
if t < tokens_intersection:
continue
final_t2c[str(t + w2_starting_offset)] = c
return final_t2c
return (
final_tokens,
merge_char_mapping(window1.token2char_start, window2.token2char_start),
merge_char_mapping(window1.token2char_end, window2.token2char_end),
)
@staticmethod
def _merge_words(
window1: RelikReaderSample, window2: RelikReaderSample
) -> Tuple[list, dict, dict]:
w1_words = window1.words
w2_words = window2.words
# find intersection if any
words_intersection = 0
for k in reversed(range(1, len(w1_words))):
if w1_words[-k:] == w2_words[:k]:
words_intersection = k
break
final_words = w1_words + w2_words[words_intersection:]
w2_starting_offset = len(w1_words) - words_intersection
def merge_word_mapping(t2c1: dict, t2c2: dict) -> dict:
final_t2c = dict()
if t2c1 is None:
t2c1 = dict()
if t2c2 is None:
t2c2 = dict()
final_t2c.update(t2c1)
for t, c in t2c2.items():
t = int(t)
if t < words_intersection:
continue
final_t2c[str(t + w2_starting_offset)] = c
return final_t2c
return (
final_words,
merge_word_mapping(window1.token2word_start, window2.token2word_start),
merge_word_mapping(window1.token2word_end, window2.token2word_end),
)
@staticmethod
def _merge_span_annotation(
span_annotation1: List[list], span_annotation2: List[list]
) -> List[list]:
uniq_store = set()
final_span_annotation_store = []
for span_annotation in itertools.chain(span_annotation1, span_annotation2):
span_annotation_id = tuple(span_annotation)
if span_annotation_id not in uniq_store:
uniq_store.add(span_annotation_id)
final_span_annotation_store.append(span_annotation)
return sorted(final_span_annotation_store, key=lambda x: x[0])
@staticmethod
def _merge_predictions(
window1: RelikReaderSample, window2: RelikReaderSample
) -> Tuple[Set[Tuple[int, int, str]], dict]:
# a RelikReaderSample should have a filed called `predicted_spans`
# that stores the span-level predictions, or a filed called
# `predicted_triples` that stores the triple-level predictions
# span predictions
merged_span_predictions: Set = set()
merged_span_probabilities = dict()
# triple predictions
merged_triplet_predictions: Set = set()
merged_triplet_probs: Dict = dict()
if (
getattr(window1, "predicted_spans", None) is not None
and getattr(window2, "predicted_spans", None) is not None
):
merged_span_predictions = set(window1.predicted_spans).union(
set(window2.predicted_spans)
)
merged_span_predictions = sorted(merged_span_predictions)
# probabilities
for span_prediction, predicted_probs in itertools.chain(
window1.probs_window_labels_chars.items()
if window1.probs_window_labels_chars is not None
else [],
window2.probs_window_labels_chars.items()
if window2.probs_window_labels_chars is not None
else [],
):
if span_prediction not in merged_span_probabilities:
merged_span_probabilities[span_prediction] = predicted_probs
if (
getattr(window1, "predicted_triples", None) is not None
and getattr(window2, "predicted_triples", None) is not None
):
# try to merge the triples predictions
# add offset to the second window
window1_triplets = [
(
merged_span_predictions.index(window1.predicted_spans[t[0]]),
t[1],
merged_span_predictions.index(window1.predicted_spans[t[2]]),
t[3]
)
for t in window1.predicted_triples
]
window2_triplets = [
(
merged_span_predictions.index(window2.predicted_spans[t[0]]),
t[1],
merged_span_predictions.index(window2.predicted_spans[t[2]]),
t[3]
)
for t in window2.predicted_triples
]
merged_triplet_predictions = set(window1_triplets).union(
set(window2_triplets)
)
merged_triplet_predictions = sorted(merged_triplet_predictions)
# for now no triplet probs, we don't need them for the moment
return (
merged_span_predictions,
merged_span_probabilities,
merged_triplet_predictions,
merged_triplet_probs,
)
@staticmethod
def _merge_candidates(window1: RelikReaderSample, window2: RelikReaderSample):
candidates = []
windows_candidates = []
# TODO: retro-compatibility
if getattr(window1, "candidates", None) is not None:
candidates = window1.candidates
if getattr(window2, "candidates", None) is not None:
candidates += window2.candidates
# TODO: retro-compatibility
if getattr(window1, "windows_candidates", None) is not None:
windows_candidates = window1.windows_candidates
if getattr(window2, "windows_candidates", None) is not None:
windows_candidates += window2.windows_candidates
# TODO: add programmatically
span_candidates = []
if getattr(window1, "span_candidates", None) is not None:
span_candidates = window1.span_candidates
if getattr(window2, "span_candidates", None) is not None:
span_candidates += window2.span_candidates
triplet_candidates = []
if getattr(window1, "triplet_candidates", None) is not None:
triplet_candidates = window1.triplet_candidates
if getattr(window2, "triplet_candidates", None) is not None:
triplet_candidates += window2.triplet_candidates
# make them unique
candidates = list(set(candidates))
windows_candidates = list(set(windows_candidates))
span_candidates = list(set(span_candidates))
triplet_candidates = list(set(triplet_candidates))
return candidates, windows_candidates, span_candidates, triplet_candidates
def _merge_window_pair(
self,
window1: RelikReaderSample,
window2: RelikReaderSample,
) -> RelikReaderSample:
merging_output = dict()
if getattr(window1, "doc_id", None) is not None:
assert window1.doc_id == window2.doc_id
if getattr(window1, "offset", None) is not None:
assert (
window1.offset < window2.offset
), f"window 2 offset ({window2.offset}) is smaller that window 1 offset({window1.offset})"
merging_output["doc_id"] = window1.doc_id
merging_output["offset"] = window2.offset
m_tokens, m_token2char_start, m_token2char_end = self._merge_tokens(
window1, window2
)
m_words, m_token2word_start, m_token2word_end = self._merge_words(
window1, window2
)
(
m_candidates,
m_windows_candidates,
m_span_candidates,
m_triplet_candidates,
) = self._merge_candidates(window1, window2)
window_labels = None
if getattr(window1, "window_labels", None) is not None:
window_labels = self._merge_span_annotation(
window1.window_labels, window2.window_labels
)
(
predicted_spans,
predicted_spans_probs,
predicted_triples,
predicted_triples_probs,
) = self._merge_predictions(window1, window2)
merging_output.update(
dict(
tokens=m_tokens,
words=m_words,
token2char_start=m_token2char_start,
token2char_end=m_token2char_end,
token2word_start=m_token2word_start,
token2word_end=m_token2word_end,
window_labels=window_labels,
candidates=m_candidates,
span_candidates=m_span_candidates,
triplet_candidates=m_triplet_candidates,
windows_candidates=m_windows_candidates,
predicted_spans=predicted_spans,
predicted_spans_probs=predicted_spans_probs,
predicted_triples=predicted_triples,
predicted_triples_probs=predicted_triples_probs,
)
)
return RelikReaderSample(**merging_output)
|