File size: 13,324 Bytes
626eca0 9ee75f8 626eca0 9ee75f8 626eca0 5937143 626eca0 5937143 626eca0 9ee75f8 626eca0 9ee75f8 626eca0 9ee75f8 626eca0 8745a5f 9ee75f8 8745a5f 9ee75f8 8745a5f 1103011 626eca0 9ee75f8 2e3f491 9ee75f8 1103011 9ee75f8 c047b4f 129b641 9ee75f8 c047b4f 9ee75f8 c047b4f 1103011 626eca0 9ee75f8 626eca0 9ee75f8 626eca0 9ee75f8 626eca0 c047b4f 70a5d22 c047b4f 626eca0 9ee75f8 626eca0 fb04667 626eca0 9ee75f8 626eca0 1103011 c047b4f 626eca0 1fbbd06 c047b4f 1fbbd06 c047b4f 626eca0 1103011 9ee75f8 626eca0 1103011 626eca0 9ee75f8 1fbbd06 9ee75f8 1fbbd06 70a5d22 626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import os
import re
import time
from pathlib import Path
from relik.retriever import GoldenRetriever
from relik.retriever.indexers.inmemory import InMemoryDocumentIndex
from relik.retriever.indexers.document import DocumentStore
from relik.retriever import GoldenRetriever
from relik.reader.pytorch_modules.span import RelikReaderForSpanExtraction
import requests
import streamlit as st
from spacy import displacy
from streamlit_extras.badges import badge
from streamlit_extras.stylable_container import stylable_container
# RELIK = os.getenv("RELIK", "localhost:8000/api/entities")
import random
from relik.inference.annotator import Relik
from relik.inference.data.objects import (
AnnotationType,
RelikOutput,
Span,
TaskType,
Triples,
)
def get_random_color(ents):
colors = {}
random_colors = generate_pastel_colors(len(ents))
for ent in ents:
colors[ent] = random_colors.pop(random.randint(0, len(random_colors) - 1))
return colors
def floatrange(start, stop, steps):
if int(steps) == 1:
return [stop]
return [
start + float(i) * (stop - start) / (float(steps) - 1) for i in range(steps)
]
def hsl_to_rgb(h, s, l):
def hue_2_rgb(v1, v2, v_h):
while v_h < 0.0:
v_h += 1.0
while v_h > 1.0:
v_h -= 1.0
if 6 * v_h < 1.0:
return v1 + (v2 - v1) * 6.0 * v_h
if 2 * v_h < 1.0:
return v2
if 3 * v_h < 2.0:
return v1 + (v2 - v1) * ((2.0 / 3.0) - v_h) * 6.0
return v1
# if not (0 <= s <= 1): raise ValueError, "s (saturation) parameter must be between 0 and 1."
# if not (0 <= l <= 1): raise ValueError, "l (lightness) parameter must be between 0 and 1."
r, b, g = (l * 255,) * 3
if s != 0.0:
if l < 0.5:
var_2 = l * (1.0 + s)
else:
var_2 = (l + s) - (s * l)
var_1 = 2.0 * l - var_2
r = 255 * hue_2_rgb(var_1, var_2, h + (1.0 / 3.0))
g = 255 * hue_2_rgb(var_1, var_2, h)
b = 255 * hue_2_rgb(var_1, var_2, h - (1.0 / 3.0))
return int(round(r)), int(round(g)), int(round(b))
def generate_pastel_colors(n):
"""Return different pastel colours.
Input:
n (integer) : The number of colors to return
Output:
A list of colors in HTML notation (eg.['#cce0ff', '#ffcccc', '#ccffe0', '#f5ccff', '#f5ffcc'])
Example:
>>> print generate_pastel_colors(5)
['#cce0ff', '#f5ccff', '#ffcccc', '#f5ffcc', '#ccffe0']
"""
if n == 0:
return []
# To generate colors, we use the HSL colorspace (see http://en.wikipedia.org/wiki/HSL_color_space)
start_hue = 0.0 # 0=red 1/3=0.333=green 2/3=0.666=blue
saturation = 1.0
lightness = 0.9
# We take points around the chromatic circle (hue):
# (Note: we generate n+1 colors, then drop the last one ([:-1]) because
# it equals the first one (hue 0 = hue 1))
return [
"#%02x%02x%02x" % hsl_to_rgb(hue, saturation, lightness)
for hue in floatrange(start_hue, start_hue + 1, n + 1)
][:-1]
def set_sidebar(css):
with st.sidebar:
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True)
st.image(
"https://upload.wikimedia.org/wikipedia/commons/8/87/The_World_Bank_logo.svg",
use_column_width=True,
)
st.markdown("### World Bank")
st.markdown("### DIME")
def get_el_annotations(response):
i_link_wrapper = "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='https://developmentevidence.3ieimpact.org/taxonomy-search-detail/intervention/disaggregated-intervention/{}' style='color: #414141'> <span style='font-size: 1.0em; font-family: monospace'> Intervention {}</span></a>"
o_link_wrapper = "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='https://developmentevidence.3ieimpact.org/taxonomy-search-detail/intervention/disaggregated-outcome/{}' style='color: #414141'><span style='font-size: 1.0em; font-family: monospace'> Outcome: {}</span></a>"
# swap labels key with ents
ents = [
{
"start": l.start,
"end": l.end,
"label": i_link_wrapper.format(l.label[0].upper() + l.label[1:].replace("/", "%2").replace(" ", "%20").replace("&","%26"), l.label),
} if io_map[l.label] == "intervention" else
{
"start": l.start,
"end": l.end,
"label": o_link_wrapper.format(l.label[0].upper() + l.label[1:].replace("/", "%2").replace(" ", "%20").replace("&","%26"), l.label),
}
for l in response.spans
]
dict_of_ents = {"text": response.text, "ents": ents}
label_in_text = set(l["label"] for l in dict_of_ents["ents"])
options = {"ents": label_in_text, "colors": get_random_color(label_in_text)}
return dict_of_ents, options
def get_retriever_annotations(response):
el_link_wrapper = "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='https://en.wikipedia.org/wiki/{}' style='color: #414141'><i class='fa-brands fa-wikipedia-w fa-xs'></i> <span style='font-size: 1.0em; font-family: monospace'> {}</span></a>"
# swap labels key with ents
ents = [l.text
for l in response.candidates[TaskType.SPAN]
]
dict_of_ents = {"text": response.text, "ents": ents}
label_in_text = set(l for l in dict_of_ents["ents"])
options = {"ents": label_in_text, "colors": get_random_color(label_in_text)}
return dict_of_ents, options
import json
io_map = {}
with open("/home/user/app/models/retriever/document_index/documents.jsonl", "r") as r:
for line in r:
element = json.loads(line)
io_map[element["text"]] = element["metadata"]["type"]
@st.cache_resource()
def load_model():
retriever_question = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/questions"
)
retriever_intervention = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/interventions"
)
retriever_outcome = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/outcomes"
)
retriever_question_db = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/question_db"
)
retriever_intervention_db = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/interventions_db"
)
retriever_outcome_db = GoldenRetriever(
question_encoder="/home/user/app/models/retriever/question_encoder",
document_index="home/user/app/models/retriever/document_index/outcomes_db"
)
reader = RelikReaderForSpanExtraction("/home/user/app/models/small-extended-large-batch",
dataset_kwargs={"use_nme": True})
relik_question = Relik(reader=reader, retriever=retriever_question, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
relik_intervention = Relik(reader=reader, retriever=retriever_intervention, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
relik_outcome = Relik(reader=reader, retriever=retriever_outcome, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
relik_question_db = Relik(reader=reader, retriever=retriever_question_db, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
relik_intrervention_db = Relik(reader=reader, retriever=retriever_intervention_db, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
relik_outcome_db = Relik(reader=reader, retriever=retriever_outcome_db, window_size="none", top_k=100, task="span", device="cuda", document_index_device="cpu")
return [relik_question, relik_intervention, relik_outcome, relik_question_db, relik_intrervention_db, relik_outcome_db]
def set_intro(css):
# intro
st.markdown("# CausalAI")
st.image(
"http://35.237.102.64/public/logo.png",
)
st.markdown(
"### 3ie taxonomy level 4 Intervention/Outcome candidate retriever with Entity Linking"
)
# st.markdown(
# "This is a front-end for the paper [Universal Semantic Annotator: the First Unified API "
# "for WSD, SRL and Semantic Parsing](https://www.researchgate.net/publication/360671045_Universal_Semantic_Annotator_the_First_Unified_API_for_WSD_SRL_and_Semantic_Parsing), which will be presented at LREC 2022 by "
# "[Riccardo Orlando](https://riccorl.github.io), [Simone Conia](https://c-simone.github.io/), "
# "[Stefano Faralli](https://corsidilaurea.uniroma1.it/it/users/stefanofaralliuniroma1it), and [Roberto Navigli](https://www.diag.uniroma1.it/navigli/)."
# )
def run_client():
with open(Path(__file__).parent / "style.css") as f:
css = f.read()
st.set_page_config(
page_title="CausalAI",
page_icon="🦮",
layout="wide",
)
set_sidebar(css)
set_intro(css)
# Radio button selection
analysis_type = st.radio(
"Choose analysis type:",
options=["intervention", "outcome", "question", "db intervention", "db outcome"],
index=2 # Default to 'question'
)
# text input
text = st.text_area(
"Enter Text Below:",
value="How does unconditional cash transver affect to reduce poverty?",
height=200,
max_chars=1500,
)
with stylable_container(
key="annotate_button",
css_styles="""
button {
background-color: #a8ebff;
color: black;
border-radius: 25px;
}
""",
):
submit = st.button("Annotate")
# submit = st.button("Run")
if "relik_model" not in st.session_state.keys():
st.session_state["relik_model"] = load_model()
relik_model = st.session_state["relik_model"][0]
# ReLik API call
if submit:
entity_linking_bool = False
if analysis_type == "question":
relik_model = st.session_state["relik_model"][0]
entity_linking_bool = True
elif analysis_type == "intervention":
relik_model = st.session_state["relik_model"][1]
elif analysis_type == "outcome":
relik_model = st.session_state["relik_model"][2]
elif analysis_type == "db intervention":
relik_model = st.session_state["relik_model"][4]
else:
relik_model = st.session_state["relik_model"][0]
text = text.strip()
if text:
st.markdown("####")
with st.spinner(text="In progress"):
response = relik_model(text)
# response = requests.post(RELIK, json=text)
# if response.status_code != 200:
# st.error("Error: {}".format(response.status_code))
# else:
# response = response.json()
# st.markdown("##")
dict_of_ents, options = get_el_annotations(response=response)
dict_of_ents_candidates, options_candidates = get_retriever_annotations(response=response)
if entity_linking_bool:
st.markdown("#### Entity Linking")
display = displacy.render(
dict_of_ents, manual=True, style="ent", options=options
)
display = display.replace("\n", " ")
# heurstic, prevents split of annotation decorations
display = display.replace("border-radius: 0.35em;", "border-radius: 0.35em; white-space: nowrap;")
with st.container():
st.write(display, unsafe_allow_html=True)
text = """
<h2 style='color: black;'>Possible Candidates:</h2>
<ul style='color: black;'>
""" + "".join(f"<li style='color: black;'>{candidate}</li>" for candidate in dict_of_ents_candidates["ents"][2:12]) + "</ul>"
st.markdown(text, unsafe_allow_html=True)
else:
text = """
<h2 style='color: black;'>Possible Candidates:</h2>
<ul style='color: black;'>
""" + "".join(f"<li style='color: black;'>{candidate}</li>" for candidate in dict_of_ents_candidates["ents"][0:10]) + "</ul>"
st.markdown(text, unsafe_allow_html=True)
else:
st.error("Please enter some text.")
if __name__ == "__main__":
run_client()
|