File size: 37,709 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
import logging
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    Iterator,
    List,
    NamedTuple,
    Optional,
    Tuple,
    Union,
)

import numpy as np
import torch
from torch.utils.data import IterableDataset
from tqdm import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizer

from relik.reader.data.relik_reader_data_utils import (
    add_noise_to_value,
    batchify,
    chunks,
    flatten,
)
from relik.reader.data.relik_reader_sample import (
    RelikReaderSample,
    load_relik_reader_samples,
)
from relik.reader.utils.special_symbols import NME_SYMBOL

logger = logging.getLogger(__name__)


def preprocess_sample(
    relik_sample: RelikReaderSample,
    tokenizer,
    lowercase_policy: float,
    add_topic: bool = False,
) -> None:
    if len(relik_sample.tokens) == 0:
        return

    if lowercase_policy > 0:
        lc_tokens = np.random.uniform(0, 1, len(relik_sample.tokens)) < lowercase_policy
        relik_sample.tokens = [
            t.lower() if lc else t for t, lc in zip(relik_sample.tokens, lc_tokens)
        ]

    tokenization_out = tokenizer(
        relik_sample.tokens,
        return_offsets_mapping=True,
        add_special_tokens=False,
    )

    window_tokens = tokenization_out.input_ids
    window_tokens = flatten(window_tokens)

    offsets_mapping = [
        [
            (
                ss + relik_sample.token2char_start[str(i)],
                se + relik_sample.token2char_start[str(i)],
            )
            for ss, se in tokenization_out.offset_mapping[i]
        ]
        for i in range(len(relik_sample.tokens))
    ]

    offsets_mapping = flatten(offsets_mapping)

    assert len(offsets_mapping) == len(window_tokens)

    window_tokens = [tokenizer.cls_token_id] + window_tokens + [tokenizer.sep_token_id]

    topic_offset = 0
    if add_topic:
        topic_tokens = tokenizer(
            relik_sample.doc_topic, add_special_tokens=False
        ).input_ids
        topic_offset = len(topic_tokens)
        relik_sample.topic_tokens = topic_offset
        window_tokens = window_tokens[:1] + topic_tokens + window_tokens[1:]

    token2char_start = {
        str(i): s for i, (s, _) in enumerate(offsets_mapping, start=topic_offset)
    }
    token2char_end = {
        str(i): e for i, (_, e) in enumerate(offsets_mapping, start=topic_offset)
    }
    token2word_start = {
        str(i): int(relik_sample._d["char2token_start"][str(s)])
        for i, (s, _) in enumerate(offsets_mapping, start=topic_offset)
        if str(s) in relik_sample._d["char2token_start"]
    }
    token2word_end = {
        str(i): int(relik_sample._d["char2token_end"][str(e)])
        for i, (_, e) in enumerate(offsets_mapping, start=topic_offset)
        if str(e) in relik_sample._d["char2token_end"]
    }
    relik_sample._d.update(
        dict(
            tokens=window_tokens,
            token2char_start=token2char_start,
            token2char_end=token2char_end,
            token2word_start=token2word_start,
            token2word_end=token2word_end,
        )
    )

    if "window_labels" in relik_sample._d:
        relik_sample.window_labels = [
            (s, e, l.replace("_", " ")) for s, e, l in relik_sample.window_labels
        ]


class TokenizationOutput(NamedTuple):
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
    token_type_ids: torch.Tensor
    prediction_mask: torch.Tensor
    special_symbols_mask: torch.Tensor


class RelikDataset(IterableDataset):
    def __init__(
        self,
        dataset_path: Optional[str],
        materialize_samples: bool,
        transformer_model: Union[str, PreTrainedTokenizer],
        special_symbols: List[str],
        shuffle_candidates: Optional[Union[bool, float]] = False,
        for_inference: bool = False,
        noise_param: float = 0.1,
        sorting_fields: Optional[str] = None,
        tokens_per_batch: int = 2048,
        batch_size: int = None,
        max_batch_size: int = 128,
        section_size: int = 50_000,
        prebatch: bool = True,
        random_drop_gold_candidates: float = 0.0,
        use_nme: bool = True,
        max_subwords_per_candidate: bool = 22,
        mask_by_instances: bool = False,
        min_length: int = 5,
        max_length: int = 2048,
        model_max_length: int = 1000,
        split_on_cand_overload: bool = True,
        skip_empty_training_samples: bool = False,
        drop_last: bool = False,
        samples: Optional[Iterator[RelikReaderSample]] = None,
        lowercase_policy: float = 0.0,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.dataset_path = dataset_path
        self.materialize_samples = materialize_samples
        self.samples: Optional[List[RelikReaderSample]] = None
        if self.materialize_samples:
            self.samples = list()

        if isinstance(transformer_model, str):
            self.tokenizer = self._build_tokenizer(transformer_model, special_symbols)
        else:
            self.tokenizer = transformer_model
        self.special_symbols = special_symbols
        self.shuffle_candidates = shuffle_candidates
        self.for_inference = for_inference
        self.noise_param = noise_param
        self.batching_fields = ["input_ids"]
        self.sorting_fields = (
            sorting_fields if sorting_fields is not None else self.batching_fields
        )

        self.tokens_per_batch = tokens_per_batch
        self.batch_size = batch_size
        self.max_batch_size = max_batch_size
        self.section_size = section_size
        self.prebatch = prebatch

        self.random_drop_gold_candidates = random_drop_gold_candidates
        self.use_nme = use_nme
        self.max_subwords_per_candidate = max_subwords_per_candidate
        self.mask_by_instances = mask_by_instances
        self.min_length = min_length
        self.max_length = max_length
        self.model_max_length = (
            model_max_length
            if model_max_length < self.tokenizer.model_max_length
            else self.tokenizer.model_max_length
        )

        # retrocompatibility workaround
        self.transformer_model = (
            transformer_model
            if isinstance(transformer_model, str)
            else transformer_model.name_or_path
        )
        self.split_on_cand_overload = split_on_cand_overload
        self.skip_empty_training_samples = skip_empty_training_samples
        self.drop_last = drop_last
        self.lowercase_policy = lowercase_policy
        self.samples = samples

    def _build_tokenizer(self, transformer_model: str, special_symbols: List[str]):
        return AutoTokenizer.from_pretrained(
            transformer_model,
            additional_special_tokens=[ss for ss in special_symbols],
            add_prefix_space=True,
        )

    @staticmethod
    def get_special_symbols(num_entities: int) -> List[str]:
        return [NME_SYMBOL] + [f"[E-{i}]" for i in range(num_entities)]

    @property
    def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]:
        fields_batchers = {
            "input_ids": lambda x: batchify(
                x, padding_value=self.tokenizer.pad_token_id
            ),
            "attention_mask": lambda x: batchify(x, padding_value=0),
            "token_type_ids": lambda x: batchify(x, padding_value=0),
            "prediction_mask": lambda x: batchify(x, padding_value=1),
            "global_attention": lambda x: batchify(x, padding_value=0),
            "token2word": None,
            "sample": None,
            "special_symbols_mask": lambda x: batchify(x, padding_value=False),
            "start_labels": lambda x: batchify(x, padding_value=-100),
            "end_labels": lambda x: batchify(x, padding_value=-100),
            "predictable_candidates_symbols": None,
            "predictable_candidates": None,
            "patch_offset": None,
            "optimus_labels": None,
        }

        if (
            isinstance(self.transformer_model, str)
            and "roberta" in self.transformer_model
        ) or (
            isinstance(self.transformer_model, PreTrainedTokenizer)
            and "roberta" in self.transformer_model.config.model_type
        ):
            del fields_batchers["token_type_ids"]

        return fields_batchers

    def _build_input_ids(
        self, sentence_input_ids: List[int], candidates_input_ids: List[List[int]]
    ) -> List[int]:
        return (
            [self.tokenizer.cls_token_id]
            + sentence_input_ids
            + [self.tokenizer.sep_token_id]
            + flatten(candidates_input_ids)
            + [self.tokenizer.sep_token_id]
        )

    def _get_special_symbols_mask(self, input_ids: torch.Tensor) -> torch.Tensor:
        special_symbols_mask = input_ids >= (
            len(self.tokenizer) - len(self.special_symbols)
        )
        special_symbols_mask[0] = True
        return special_symbols_mask

    def _build_tokenizer_essentials(
        self, input_ids, original_sequence, sample
    ) -> TokenizationOutput:
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        attention_mask = torch.ones_like(input_ids)

        total_sequence_len = len(input_ids)
        predictable_sentence_len = len(original_sequence)

        # token type ids
        token_type_ids = torch.cat(
            [
                input_ids.new_zeros(
                    predictable_sentence_len + 2
                ),  # original sentence bpes + CLS and SEP
                input_ids.new_ones(total_sequence_len - predictable_sentence_len - 2),
            ]
        )

        # prediction mask -> boolean on tokens that are predictable

        prediction_mask = torch.tensor(
            [1]
            + ([0] * predictable_sentence_len)
            + ([1] * (total_sequence_len - predictable_sentence_len - 1))
        )

        # add topic tokens to the prediction mask so that they cannot be predicted
        # or optimized during training
        topic_tokens = getattr(sample, "topic_tokens", None)
        if topic_tokens is not None:
            prediction_mask[1 : 1 + topic_tokens] = 1

        # If mask by instances is active the prediction mask is applied to everything
        # that is not indicated as an instance in the training set.
        if self.mask_by_instances:
            char_start2token = {
                cs: int(tok) for tok, cs in sample.token2char_start.items()
            }
            char_end2token = {ce: int(tok) for tok, ce in sample.token2char_end.items()}
            instances_mask = torch.ones_like(prediction_mask)
            for _, span_info in sample.instance_id2span_data.items():
                span_info = span_info[0]
                token_start = char_start2token[span_info[0]] + 1  # +1 for the CLS
                token_end = char_end2token[span_info[1]] + 1  # +1 for the CLS
                instances_mask[token_start : token_end + 1] = 0

            prediction_mask += instances_mask
            prediction_mask[prediction_mask > 1] = 1

        assert len(prediction_mask) == len(input_ids)

        # special symbols mask
        special_symbols_mask = self._get_special_symbols_mask(input_ids)

        return TokenizationOutput(
            input_ids,
            attention_mask,
            token_type_ids,
            prediction_mask,
            special_symbols_mask,
        )

    def _build_labels(
        self,
        sample,
        tokenization_output: TokenizationOutput,
        predictable_candidates: List[str],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        start_labels = [0] * len(tokenization_output.input_ids)
        end_labels = [0] * len(tokenization_output.input_ids)

        char_start2token = {v: int(k) for k, v in sample.token2char_start.items()}
        char_end2token = {v: int(k) for k, v in sample.token2char_end.items()}
        for cs, ce, gold_candidate_title in sample.window_labels:
            if gold_candidate_title not in predictable_candidates:
                if self.use_nme:
                    gold_candidate_title = NME_SYMBOL
                else:
                    continue
            # +1 is to account for the CLS token
            start_bpe = char_start2token[cs] + 1
            end_bpe = char_end2token[ce] + 1
            class_index = predictable_candidates.index(gold_candidate_title)
            if (
                start_labels[start_bpe] == 0 and end_labels[end_bpe] == 0
            ):  # prevent from having entities that ends with the same label
                start_labels[start_bpe] = class_index + 1  # +1 for the NONE class
                end_labels[end_bpe] = class_index + 1  # +1 for the NONE class
            else:
                print(
                    "Found entity with the same last subword, it will not be included."
                )
                print(
                    cs,
                    ce,
                    gold_candidate_title,
                    start_labels,
                    end_labels,
                    sample.doc_id,
                )

        ignored_labels_indices = tokenization_output.prediction_mask == 1

        start_labels = torch.tensor(start_labels, dtype=torch.long)
        start_labels[ignored_labels_indices] = -100

        end_labels = torch.tensor(end_labels, dtype=torch.long)
        end_labels[ignored_labels_indices] = -100

        return start_labels, end_labels

    def produce_sample_bag(
        self, sample, predictable_candidates: List[str], candidates_starting_offset: int
    ) -> Optional[Tuple[dict, list, int]]:
        # input sentence tokenization
        input_subwords = sample.tokens[1:-1]  # removing special tokens
        candidates_symbols = self.special_symbols[candidates_starting_offset:]

        predictable_candidates = list(predictable_candidates)
        original_predictable_candidates = list(predictable_candidates)

        # add NME as a possible candidate
        if self.use_nme:
            predictable_candidates.insert(0, NME_SYMBOL)

        # candidates encoding
        candidates_symbols = candidates_symbols[: len(predictable_candidates)]
        candidates_encoding_result = self.tokenizer.batch_encode_plus(
            [
                "{} {}".format(cs, ct) if ct != NME_SYMBOL else NME_SYMBOL
                for cs, ct in zip(candidates_symbols, predictable_candidates)
            ],
            add_special_tokens=False,
        ).input_ids

        if (
            self.max_subwords_per_candidate is not None
            and self.max_subwords_per_candidate > 0
        ):
            candidates_encoding_result = [
                cer[: self.max_subwords_per_candidate]
                for cer in candidates_encoding_result
            ]

        # drop candidates if the number of input tokens is too long for the model
        if (
            sum(map(len, candidates_encoding_result))
            + len(input_subwords)
            + 20  # + 20 special tokens
            > self.model_max_length
        ):
            acceptable_tokens_from_candidates = (
                self.model_max_length - 20 - len(input_subwords)
            )
            i = 0
            cum_len = 0
            while (
                cum_len + len(candidates_encoding_result[i])
                < acceptable_tokens_from_candidates
            ):
                cum_len += len(candidates_encoding_result[i])
                i += 1

            candidates_encoding_result = candidates_encoding_result[:i]
            candidates_symbols = candidates_symbols[:i]
            predictable_candidates = predictable_candidates[:i]

        # final input_ids build
        input_ids = self._build_input_ids(
            sentence_input_ids=input_subwords,
            candidates_input_ids=candidates_encoding_result,
        )

        # complete input building (e.g. attention / prediction mask)
        tokenization_output = self._build_tokenizer_essentials(
            input_ids, input_subwords, sample
        )

        output_dict = {
            "input_ids": tokenization_output.input_ids,
            "attention_mask": tokenization_output.attention_mask,
            "token_type_ids": tokenization_output.token_type_ids,
            "prediction_mask": tokenization_output.prediction_mask,
            "special_symbols_mask": tokenization_output.special_symbols_mask,
            "sample": sample,
            "predictable_candidates_symbols": candidates_symbols,
            "predictable_candidates": predictable_candidates,
        }

        # labels creation
        if sample.window_labels is not None:
            start_labels, end_labels = self._build_labels(
                sample,
                tokenization_output,
                predictable_candidates,
            )
            output_dict.update(start_labels=start_labels, end_labels=end_labels)

        if (
            "roberta" in self.transformer_model
            or "longformer" in self.transformer_model
        ):
            del output_dict["token_type_ids"]

        predictable_candidates_set = set(predictable_candidates)
        remaining_candidates = [
            candidate
            for candidate in original_predictable_candidates
            if candidate not in predictable_candidates_set
        ]
        total_used_candidates = (
            candidates_starting_offset
            + len(predictable_candidates)
            - (1 if self.use_nme else 0)
        )

        if self.use_nme:
            assert predictable_candidates[0] == NME_SYMBOL

        return output_dict, remaining_candidates, total_used_candidates

    def __iter__(self):
        dataset_iterator = self.dataset_iterator_func()
        i = None
        for batch in self.materialize_batches(dataset_iterator):
            if i is None:
                i = 0
            i += batch["input_ids"].shape[0]
            yield batch
        if i is not None:
            logger.debug(f"Dataset finished: {i} number of elements processed")
        else:
            logger.warning("Dataset empty")

    def iter_all(self):
        dataset_iterator = self.dataset_iterator_func()

        current_dataset_elements = []

        i = None
        for i, dataset_elem in enumerate(dataset_iterator, start=1):
            if (
                self.section_size is not None
                and len(current_dataset_elements) == self.section_size
            ):
                for batch in self.materialize_batches(current_dataset_elements):
                    yield batch
                current_dataset_elements = []

            current_dataset_elements.append(dataset_elem)

            if i % 50_000 == 0:
                logger.info(f"Processed: {i} number of elements")

        if len(current_dataset_elements) != 0:
            for batch in self.materialize_batches(current_dataset_elements):
                yield batch

        if i is not None:
            logger.debug(f"Dataset finished: {i} number of elements processed")
        else:
            logger.warning("Dataset empty")

    def dataset_iterator_func(self):
        skipped_instances = 0
        data_samples = (
            load_relik_reader_samples(self.dataset_path)
            if self.samples is None
            else self.samples
        )
        for sample in data_samples:
            preprocess_sample(
                sample, self.tokenizer, lowercase_policy=self.lowercase_policy
            )
            current_patch = 0
            sample_bag, used_candidates = None, None
            # TODO: compatibility shit
            sample.window_candidates = sample.span_candidates

            remaining_candidates = list(sample.window_candidates)

            if not self.for_inference:
                # randomly drop gold candidates at training time
                if (
                    self.random_drop_gold_candidates > 0.0
                    and np.random.uniform() < self.random_drop_gold_candidates
                    and len(set(ct for _, _, ct in sample.window_labels)) > 1
                ):
                    # selecting candidates to drop
                    np.random.shuffle(sample.window_labels)
                    n_dropped_candidates = np.random.randint(
                        0, len(sample.window_labels) - 1
                    )
                    dropped_candidates = [
                        label_elem[-1]
                        for label_elem in sample.window_labels[:n_dropped_candidates]
                    ]
                    dropped_candidates = set(dropped_candidates)

                    # saving NMEs because they should not be dropped
                    if NME_SYMBOL in dropped_candidates:
                        dropped_candidates.remove(NME_SYMBOL)

                    # sample update
                    sample.window_labels = [
                        (
                            (s, e, _l)
                            if _l not in dropped_candidates
                            else (s, e, NME_SYMBOL)
                        )
                        for s, e, _l in sample.window_labels
                    ]
                    remaining_candidates = [
                        wc
                        for wc in remaining_candidates
                        if wc not in dropped_candidates
                    ]

                # shuffle candidates
                if (
                    isinstance(self.shuffle_candidates, bool)
                    and self.shuffle_candidates
                ) or (
                    isinstance(self.shuffle_candidates, float)
                    and np.random.uniform() < self.shuffle_candidates
                ):
                    np.random.shuffle(remaining_candidates)

            while len(remaining_candidates) != 0:
                sample_bag = self.produce_sample_bag(
                    sample,
                    predictable_candidates=remaining_candidates,
                    candidates_starting_offset=(
                        used_candidates if used_candidates is not None else 0
                    ),
                )
                if sample_bag is not None:
                    sample_bag, remaining_candidates, used_candidates = sample_bag
                    if (
                        self.for_inference
                        or not self.skip_empty_training_samples
                        or (
                            (
                                sample_bag.get("start_labels") is not None
                                and torch.any(sample_bag["start_labels"] > 1).item()
                            )
                            or (
                                sample_bag.get("optimus_labels") is not None
                                and len(sample_bag["optimus_labels"]) > 0
                            )
                        )
                    ):
                        sample_bag["patch_offset"] = current_patch
                        current_patch += 1
                        yield sample_bag
                    else:
                        skipped_instances += 1
                        if skipped_instances % 1000 == 0 and skipped_instances != 0:
                            logger.info(
                                f"Skipped {skipped_instances} instances since they did not have any gold labels..."
                            )

                # Just use the first fitting candidates if split on
                #  cand is not True
                if not self.split_on_cand_overload:
                    break

    def preshuffle_elements(self, dataset_elements: List):
        # This shuffling is done so that when using the sorting function,
        # if it is deterministic given a collection and its order, we will
        # make the whole operation not deterministic anymore.
        # Basically, the aim is not to build every time the same batches.
        if not self.for_inference:
            dataset_elements = np.random.permutation(dataset_elements)

        def sorting_fn(elem):
            return (
                add_noise_to_value(
                    sum(len(elem[k]) for k in self.sorting_fields),
                    noise_param=self.noise_param,
                )
                if not self.for_inference
                else sum(len(elem[k]) for k in self.sorting_fields)
            )

        dataset_elements = sorted(dataset_elements, key=sorting_fn)

        if self.for_inference:
            return dataset_elements

        ds = list(chunks(dataset_elements, 64))
        np.random.shuffle(ds)
        return flatten(ds)

    def materialize_batches(
        self, dataset_elements: List[Dict[str, Any]]
    ) -> Generator[Dict[str, Any], None, None]:
        if self.prebatch:
            dataset_elements = self.preshuffle_elements(dataset_elements)

        current_batch = []

        # function that creates a batch from the 'current_batch' list
        def output_batch() -> Dict[str, Any]:
            assert (
                len(
                    set([len(elem["predictable_candidates"]) for elem in current_batch])
                )
                == 1
            ), " ".join(
                map(
                    str, [len(elem["predictable_candidates"]) for elem in current_batch]
                )
            )

            batch_dict = dict()

            de_values_by_field = {
                fn: [de[fn] for de in current_batch if fn in de]
                for fn in self.fields_batcher
            }

            # in case you provide fields batchers but in the batch
            # there are no elements for that field
            de_values_by_field = {
                fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0
            }

            assert len(set([len(v) for v in de_values_by_field.values()]))

            # todo: maybe we should report the user about possible
            #  fields filtering due to "None" instances
            de_values_by_field = {
                fn: fvs
                for fn, fvs in de_values_by_field.items()
                if all([fv is not None for fv in fvs])
            }

            for field_name, field_values in de_values_by_field.items():
                field_batch = (
                    self.fields_batcher[field_name](field_values)
                    if self.fields_batcher[field_name] is not None
                    else field_values
                )

                batch_dict[field_name] = field_batch

            return batch_dict

        max_len_discards, min_len_discards = 0, 0

        should_token_batch = self.batch_size is None

        curr_pred_elements = -1
        for de in dataset_elements:
            if (
                should_token_batch
                and self.max_batch_size != -1
                and len(current_batch) == self.max_batch_size
            ) or (not should_token_batch and len(current_batch) == self.batch_size):
                yield output_batch()
                current_batch = []
                curr_pred_elements = -1

            too_long_fields = [
                k
                for k in de
                if self.max_length != -1
                and torch.is_tensor(de[k])
                and len(de[k]) > self.max_length
            ]
            if len(too_long_fields) > 0:
                max_len_discards += 1
                continue

            too_short_fields = [
                k
                for k in de
                if self.min_length != -1
                and torch.is_tensor(de[k])
                and len(de[k]) < self.min_length
            ]
            if len(too_short_fields) > 0:
                min_len_discards += 1
                continue

            if should_token_batch:
                de_len = sum(len(de[k]) for k in self.batching_fields)

                future_max_len = max(
                    de_len,
                    max(
                        [
                            sum(len(bde[k]) for k in self.batching_fields)
                            for bde in current_batch
                        ],
                        default=0,
                    ),
                )

                future_tokens_per_batch = future_max_len * (len(current_batch) + 1)

                num_predictable_candidates = len(de["predictable_candidates"])

                if len(current_batch) > 0 and (
                    future_tokens_per_batch >= self.tokens_per_batch
                    or (
                        num_predictable_candidates != curr_pred_elements
                        and curr_pred_elements != -1
                    )
                ):
                    yield output_batch()
                    current_batch = []

            current_batch.append(de)
            curr_pred_elements = len(de["predictable_candidates"])

        if len(current_batch) != 0 and not self.drop_last:
            yield output_batch()

        if max_len_discards > 0:
            if self.for_inference:
                logger.warning(
                    f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were "
                    f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
                    f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the "
                    f"sample length exceeds the maximum length supported by the current model."
                )
            else:
                logger.warning(
                    f"During iteration, {max_len_discards} elements were "
                    f"discarded since longer than max length {self.max_length}"
                )

        if min_len_discards > 0:
            if self.for_inference:
                logger.warning(
                    f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were "
                    f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
                    f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the "
                    f"sample length is shorter than the minimum length supported by the current model."
                )
            else:
                logger.warning(
                    f"During iteration, {min_len_discards} elements were "
                    f"discarded since shorter than min length {self.min_length}"
                )

    @staticmethod
    def convert_to_char_annotations(
        sample: RelikReaderSample,
        remove_nmes: bool = True,
    ) -> RelikReaderSample:
        """
        Converts the annotations to char annotations.

        Args:
            sample (:obj:`RelikReaderSample`):
                The sample to convert.
            remove_nmes (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether to remove the NMEs from the annotations.
        Returns:
            :obj:`RelikReaderSample`: The converted sample.
        """
        char_annotations = set()
        for (
            predicted_entity,
            predicted_spans,
        ) in sample.predicted_window_labels.items():
            if predicted_entity == NME_SYMBOL and remove_nmes:
                continue

            for span_start, span_end in predicted_spans:
                span_start = sample.token2char_start[str(span_start)]
                span_end = sample.token2char_end[str(span_end)]

                char_annotations.add((span_start, span_end, predicted_entity))

        char_probs_annotations = dict()
        for (
            span_start,
            span_end,
        ), candidates_probs in sample.span_title_probabilities.items():
            span_start = sample.token2char_start[str(span_start)]
            span_end = sample.token2char_end[str(span_end)]
            # TODO: which one is kept if there are multiple candidates with same title?
            # and where is the order?
            char_probs_annotations[(span_start, span_end)] = {
                title for title, _ in candidates_probs
            }

        sample.predicted_window_labels_chars = char_annotations
        sample.probs_window_labels_chars = char_probs_annotations

        # try-out for a new format
        sample.predicted_spans = char_annotations
        sample.predicted_spans_probabilities = char_probs_annotations

        return sample

    @staticmethod
    def convert_to_word_annotations(
        sample: RelikReaderSample,
        remove_nmes: bool = True,
    ) -> RelikReaderSample:
        """
        Converts the annotations to tokens annotations.

        Args:
            sample (:obj:`RelikReaderSample`):
                The sample to convert.
            remove_nmes (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether to remove the NMEs from the annotations.

        Returns:
            :obj:`RelikReaderSample`: The converted sample.
        """
        word_annotations = set()
        for (
            predicted_entity,
            predicted_spans,
        ) in sample.predicted_window_labels.items():
            if predicted_entity == NME_SYMBOL and remove_nmes:
                continue

            for span_start, span_end in predicted_spans:
                if str(span_start) not in sample.token2word_start:
                    # span_start is in the middle of a word
                    # retrieve the first token of the word
                    while str(span_start) not in sample.token2word_start:
                        span_start -= 1
                        # skip
                        if span_start < 0:
                            break
                if str(span_end) not in sample.token2word_end:
                    # span_end is in the middle of a word
                    # retrieve the last token of the word
                    while str(span_end) not in sample.token2word_end:
                        span_end += 1
                        # skip
                        if span_end >= len(sample.tokens):
                            break

                if span_start < 0 or span_end >= len(sample.tokens):
                    continue

                span_start = sample.token2word_start[str(span_start)]
                span_end = sample.token2word_end[str(span_end)]

                word_annotations.add((span_start, span_end + 1, predicted_entity))

        word_probs_annotations = dict()
        for (
            span_start,
            span_end,
        ), candidates_probs in sample.span_title_probabilities.items():
            for span_start, span_end in predicted_spans:
                if str(span_start) not in sample.token2word_start:
                    # span_start is in the middle of a word
                    # retrieve the first token of the word
                    while str(span_start) not in sample.token2word_start:
                        span_start -= 1
                        # skip
                        if span_start < 0:
                            break
                if str(span_end) not in sample.token2word_end:
                    # span_end is in the middle of a word
                    # retrieve the last token of the word
                    while str(span_end) not in sample.token2word_end:
                        span_end += 1
                        # skip
                        if span_end >= len(sample.tokens):
                            break

                if span_start < 0 or span_end >= len(sample.tokens):
                    continue
            span_start = sample.token2word_start[str(span_start)]
            span_end = sample.token2word_end[str(span_end)]
            word_probs_annotations[(span_start, span_end + 1)] = {
                title for title, _ in candidates_probs
            }

        sample.predicted_window_labels_words = word_annotations
        sample.probs_window_labels_words = word_probs_annotations

        # try-out for a new format
        sample.predicted_spans = word_annotations
        sample.predicted_spans_probabilities = word_probs_annotations
        return sample

    @staticmethod
    def merge_patches_predictions(sample) -> None:
        sample._d["predicted_window_labels"] = dict()
        predicted_window_labels = sample._d["predicted_window_labels"]

        sample._d["span_title_probabilities"] = dict()
        span_title_probabilities = sample._d["span_title_probabilities"]

        span2title = dict()
        for _, patch_info in sorted(sample.patches.items(), key=lambda x: x[0]):
            # selecting span predictions
            for predicted_title, predicted_spans in patch_info[
                "predicted_window_labels"
            ].items():
                for pred_span in predicted_spans:
                    pred_span = tuple(pred_span)
                    curr_title = span2title.get(pred_span)
                    if curr_title is None or curr_title == NME_SYMBOL:
                        span2title[pred_span] = predicted_title
                    # else:
                    #     print("Merging at patch level")

            # selecting span predictions probability
            for predicted_span, titles_probabilities in patch_info[
                "span_title_probabilities"
            ].items():
                if predicted_span not in span_title_probabilities:
                    span_title_probabilities[predicted_span] = titles_probabilities

        for span, title in span2title.items():
            if title not in predicted_window_labels:
                predicted_window_labels[title] = list()
            predicted_window_labels[title].append(span)