File size: 36,965 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8a590
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
import logging
import os
import time
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import hydra
import torch
from omegaconf import DictConfig, OmegaConf

from relik.inference.data.splitters.blank_sentence_splitter import BlankSentenceSplitter
from relik.common.log import get_logger
from relik.common.upload import get_logged_in_username, upload
from relik.common.utils import CONFIG_NAME, from_cache
from relik.inference.data.objects import (
    AnnotationType,
    RelikOutput,
    Span,
    TaskType,
    Triples,
)
from relik.inference.data.splitters.base_sentence_splitter import BaseSentenceSplitter
from relik.inference.data.splitters.spacy_sentence_splitter import SpacySentenceSplitter
from relik.inference.data.splitters.window_based_splitter import WindowSentenceSplitter
from relik.inference.data.tokenizers.spacy_tokenizer import SpacyTokenizer
from relik.inference.data.window.manager import WindowManager
from relik.reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.pytorch_modules.base import RelikReaderBase
from relik.reader.pytorch_modules.span import RelikReaderForSpanExtraction
from relik.reader.pytorch_modules.triplet import RelikReaderForTripletExtraction
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.indexers.document import Document
from relik.retriever.pytorch_modules import PRECISION_MAP
from relik.retriever.pytorch_modules.model import GoldenRetriever

# set tokenizers parallelism to False

os.environ["TOKENIZERS_PARALLELISM"] = os.getenv("TOKENIZERS_PARALLELISM", "false")

LOG_QUERY = os.getenv("RELIK_LOG_QUERY_ON_FILE", "false").lower() == "true"

logger = get_logger(__name__, level=logging.INFO)
file_logger = None
if LOG_QUERY:
    RELIK_LOG_PATH = Path(__file__).parent.parent.parent / "relik.log"
    # create file handler which logs even debug messages
    fh = logging.FileHandler(RELIK_LOG_PATH)
    fh.setLevel(logging.INFO)
    file_logger = get_logger("relik", level=logging.INFO)
    file_logger.addHandler(fh)


class Relik:
    """
    Relik main class. It is a wrapper around a retriever and a reader.

    Args:
        retriever (:obj:`GoldenRetriever`):
            The retriever to use.
        reader (:obj:`RelikReaderBase`):
            The reader to use.
        document_index (:obj:`BaseDocumentIndex`, `optional`):
            The document index to use. If `None`, the retriever's document index will be used.
        device (`str`, `optional`, defaults to `cpu`):
            The device to use for both the retriever and the reader.
        retriever_device (`str`, `optional`, defaults to `None`):
            The device to use for the retriever. If `None`, the `device` argument will be used.
        document_index_device (`str`, `optional`, defaults to `None`):
            The device to use for the document index. If `None`, the `device` argument will be used.
        reader_device (`str`, `optional`, defaults to `None`):
            The device to use for the reader. If `None`, the `device` argument will be used.
        precision (`int`, `str` or `torch.dtype`, `optional`, defaults to `32`):
            The precision to use for both the retriever and the reader.
        retriever_precision (`int`, `str` or `torch.dtype`, `optional`, defaults to `None`):
            The precision to use for the retriever. If `None`, the `precision` argument will be used.
        document_index_precision (`int`, `str` or `torch.dtype`, `optional`, defaults to `None`):
            The precision to use for the document index. If `None`, the `precision` argument will be used.
        reader_precision (`int`, `str` or `torch.dtype`, `optional`, defaults to `None`):
            The precision to use for the reader. If `None`, the `precision` argument will be used.
        metadata_fields (`list[str]`, `optional`, defaults to `None`):
            The fields to add to the candidates for the reader.
        top_k (`int`, `optional`, defaults to `None`):
            The number of candidates to retrieve for each window.
        window_size (`int`, `optional`, defaults to `None`):
            The size of the window. If `None`, the whole text will be annotated.
        window_stride (`int`, `optional`, defaults to `None`):
            The stride of the window. If `None`, there will be no overlap between windows.
        **kwargs:
            Additional keyword arguments to pass to the retriever and the reader.
    """

    def __init__(
        self,
        retriever: GoldenRetriever | DictConfig | Dict | None = None,
        reader: RelikReaderBase | DictConfig | None = None,
        device: str | None = None,
        retriever_device: str | None = None,
        document_index_device: str | None = None,
        reader_device: str | None = None,
        precision: int | str | torch.dtype | None = None,
        retriever_precision: int | str | torch.dtype | None = None,
        document_index_precision: int | str | torch.dtype | None = None,
        reader_precision: int | str | torch.dtype | None = None,
        task: TaskType | str = TaskType.SPAN,
        metadata_fields: list[str] | None = None,
        top_k: int | None = None,
        window_size: int | str | None = None,
        window_stride: int | None = None,
        retriever_kwargs: Dict[str, Any] | None = None,
        reader_kwargs: Dict[str, Any] | None = None,
        **kwargs,
    ) -> None:
        # parse task into a TaskType
        if isinstance(task, str):
            try:
                task = TaskType(task.lower())
            except ValueError:
                raise ValueError(
                    f"Task `{task}` not recognized. "
                    f"Please choose one of {list(TaskType)}."
                )
        self.task = task

        # organize devices
        if device is not None:
            if retriever_device is None:
                retriever_device = device
            if document_index_device is None:
                document_index_device = device
            if reader_device is None:
                reader_device = device

        # organize precision
        if precision is not None:
            if retriever_precision is None:
                retriever_precision = precision
            if document_index_precision is None:
                document_index_precision = precision
            if reader_precision is None:
                reader_precision = precision

        # retriever
        self.retriever: Dict[TaskType, GoldenRetriever] = {
            TaskType.SPAN: None,
            TaskType.TRIPLET: None,
        }

        if retriever:
            # check retriever type, it can be a GoldenRetriever, a DictConfig or a Dict
            if not isinstance(retriever, (GoldenRetriever, DictConfig, Dict)):
                raise ValueError(
                    f"`retriever` must be a `GoldenRetriever`, a `DictConfig` or "
                    f"a `Dict`, got `{type(retriever)}`."
                )

            # we need to check weather the DictConfig is a DictConfig for an instance of GoldenRetriever
            # or a primitive Dict
            if isinstance(retriever, DictConfig):
                # then it is probably a primitive Dict
                if "_target_" not in retriever:
                    retriever = OmegaConf.to_container(retriever, resolve=True)
                    # convert the key to TaskType
                    try:
                        retriever = {
                            TaskType(k.lower()): v for k, v in retriever.items()
                        }
                    except ValueError as e:
                        raise ValueError(
                            f"Please choose a valid task type (one of {list(TaskType)}) for each retriever."
                        ) from e

            if isinstance(retriever, Dict):
                # convert the key to TaskType
                retriever = {TaskType(k): v for k, v in retriever.items()}
            else:
                retriever = {task: retriever}

            # instantiate each retriever
            if self.task in [TaskType.SPAN, TaskType.BOTH]:
                self.retriever[TaskType.SPAN] = self._instantiate_retriever(
                    retriever[TaskType.SPAN],
                    retriever_device,
                    retriever_precision,
                    None,
                    document_index_device,
                    document_index_precision,
                )
            if self.task in [TaskType.TRIPLET, TaskType.BOTH]:
                self.retriever[TaskType.TRIPLET] = self._instantiate_retriever(
                    retriever[TaskType.TRIPLET],
                    retriever_device,
                    retriever_precision,
                    None,
                    document_index_device,
                    document_index_precision,
                )

            # clean up None retrievers from the dictionary
            self.retriever = {
                task_type: r for task_type, r in self.retriever.items() if r is not None
            }
            # torch compile
            # self.retriever = {task_type: torch.compile(r, backend="onnxrt") for task_type, r in self.retriever.items()}

        # reader
        self.reader: RelikReaderBase | None = None
        if reader:
            reader = (
                hydra.utils.instantiate(
                    reader,
                    device=reader_device,
                    precision=reader_precision,
                )
                if isinstance(reader, DictConfig)
                else reader
            )
            reader.training = False
            reader.eval()
            if reader_device is not None:
                logger.info(f"Moving reader to `{reader_device}`.")
                reader.to(reader_device)
            if reader_precision is not None and reader.precision != PRECISION_MAP[reader_precision]:
                logger.info(
                    f"Setting precision of reader to `{PRECISION_MAP[reader_precision]}`."
                )
                reader.to(PRECISION_MAP[reader_precision])
            self.reader = reader
            # self.reader = torch.compile(self.reader, backend="tvm")

        # windowization stuff
        self.tokenizer = SpacyTokenizer(language="en")  # TODO: parametrize?
        self.sentence_splitter: BaseSentenceSplitter | None = None
        self.window_manager: WindowManager | None = None

        if metadata_fields is None:
            metadata_fields = []
        self.metadata_fields = metadata_fields

        # inference params
        self.top_k = top_k
        self.window_size = window_size
        self.window_stride = window_stride

    @staticmethod
    def _instantiate_retriever(
        retriever,
        retriever_device,
        retriever_precision,
        document_index,
        document_index_device,
        document_index_precision,
    ):
        if not isinstance(retriever, GoldenRetriever):
            # convert to DictConfig
            retriever = hydra.utils.instantiate(
                OmegaConf.create(retriever),
                device=retriever_device,
                precision=retriever_precision,
                index_device=document_index_device,
                index_precision=document_index_precision,
            )
        retriever.training = False
        retriever.eval()
        if document_index is not None:
            if retriever.document_index is not None:
                logger.info(
                    "The Retriever already has a document index, replacing it with the provided one."
                    "If you want to keep using the old one, please do not provide a document index."
                )
                retriever.document_index = document_index
        # we override the device and the precision of the document index if provided
        if document_index_device is not None:
            logger.info(f"Moving document index to `{document_index_device}`.")
            retriever.document_index.to(document_index_device)
        if document_index_precision is not None:
            logger.info(
                f"Setting precision of document index to `{PRECISION_MAP[document_index_precision]}`."
            )
            retriever.document_index.to(PRECISION_MAP[document_index_precision])
        # retriever.document_index = document_index
        # now we can move the retriever to the right device and set the precision
        if retriever_device is not None:
            logger.info(f"Moving retriever to `{retriever_device}`.")
            retriever.to(retriever_device)
        if retriever_precision is not None:
            logger.info(
                f"Setting precision of retriever to `{PRECISION_MAP[retriever_precision]}`."
            )
            retriever.to(PRECISION_MAP[retriever_precision])
        return retriever

    def __call__(
        self,
        text: str | List[str] | None = None,
        windows: List[RelikReaderSample] | None = None,
        candidates: List[str]
        | List[Document]
        | Dict[TaskType, List[Document]]
        | None = None,
        mentions: List[List[int]] | List[List[List[int]]] | None = None,
        top_k: int | None = None,
        window_size: int | None = None,
        window_stride: int | None = None,
        is_split_into_words: bool = False,
        retriever_batch_size: int | None = 32,
        reader_batch_size: int | None = 32,
        return_also_windows: bool = False,
        annotation_type: str | AnnotationType = AnnotationType.CHAR,
        progress_bar: bool = False,
        **kwargs,
    ) -> Union[RelikOutput, list[RelikOutput]]:
        """
        Annotate a text with entities.

        Args:
            text (`str` or `list`):
                The text to annotate. If a list is provided, each element of the list
                 will be annotated separately.
            candidates (`list[str]`, `list[Document]`, `optional`, defaults to `None`):
                The candidates to use for the reader. If `None`, the candidates will be
                retrieved from the retriever.
            mentions (`list[list[int]]` or `list[list[list[int]]]`, `optional`, defaults to `None`):
                The mentions to use for the reader. If `None`, the mentions will be
                predicted by the reader.
            top_k (`int`, `optional`, defaults to `None`):
                The number of candidates to retrieve for each window.
            window_size (`int`, `optional`, defaults to `None`):
                The size of the window. If `None`, the whole text will be annotated.
            window_stride (`int`, `optional`, defaults to `None`):
                The stride of the window. If `None`, there will be no overlap between windows.
            retriever_batch_size (`int`, `optional`, defaults to `None`):
                The batch size to use for the retriever. The whole input is the batch for the retriever.
            reader_batch_size (`int`, `optional`, defaults to `None`):
                The batch size to use for the reader. The whole input is the batch for the reader.
            return_also_windows (`bool`, `optional`, defaults to `False`):
                Whether to return the windows in the output.
            annotation_type (`str` or `AnnotationType`, `optional`, defaults to `char`):
                The type of annotation to return. If `char`, the spans will be in terms of
                character offsets. If `word`, the spans will be in terms of word offsets.
            **kwargs:
                Additional keyword arguments to pass to the retriever and the reader.

        Returns:
            `RelikOutput` or `list[RelikOutput]`:
                The annotated text. If a list was provided as input, a list of
                `RelikOutput` objects will be returned.
        """

        if text is None and windows is None:
            raise ValueError(
                "Either `text` or `windows` must be provided. Both are `None`."
            )

        if isinstance(annotation_type, str):
            try:
                annotation_type = AnnotationType(annotation_type)
            except ValueError:
                raise ValueError(
                    f"Annotation type {annotation_type} not recognized. "
                    f"Please choose one of {list(AnnotationType)}."
                )

        if top_k is None:
            top_k = self.top_k or 100
        if window_size is None:
            window_size = self.window_size
        if window_stride is None:
            window_stride = self.window_stride

        if text:
            if isinstance(text, str):
                text = [text]
                if mentions is not None:
                    mentions = [mentions]
            if file_logger is not None:
                file_logger.info("Annotating the following text:")
                for t in text:
                    file_logger.info(f" {t}")

            if self.window_manager is None:
                if window_size == "none":
                    self.sentence_splitter = BlankSentenceSplitter()
                elif window_size == "sentence":
                    self.sentence_splitter = SpacySentenceSplitter()
                else:
                    self.sentence_splitter = WindowSentenceSplitter(
                        window_size=window_size, window_stride=window_stride
                    )
                self.window_manager = WindowManager(
                    self.tokenizer, self.sentence_splitter
                )

            if (
                window_size not in ["sentence", "none"]
                and window_stride is not None
                and window_size < window_stride
            ):
                raise ValueError(
                    f"Window size ({window_size}) must be greater than window stride ({window_stride})"
                )

        if windows is None:
            # windows were provided, use them
            windows, blank_windows = self.window_manager.create_windows(
                text,
                window_size,
                window_stride,
                is_split_into_words=is_split_into_words,
                mentions=mentions
            )
        else:
            blank_windows = []
            text = {w.doc_id: w.text for w in windows}

        if candidates is not None and any(
            r is not None for r in self.retriever.values()
        ):
            logger.info(
                "Both candidates and a retriever were provided. "
                "Retriever will be ignored."
            )

        windows_candidates = {TaskType.SPAN: None, TaskType.TRIPLET: None}
        if candidates is not None:
            # again, check if candidates is a dict
            if isinstance(candidates, Dict):
                if self.task not in candidates:
                    raise ValueError(
                        f"Task `{self.task}` not found in `candidates`."
                        f"Please choose one of {list(TaskType)}."
                    )
            else:
                candidates = {self.task: candidates}

            for task_type, _candidates in candidates.items():
                if isinstance(_candidates, list):
                    _candidates = [
                        [
                            c if isinstance(c, Document) else Document(c)
                            for c in _candidates[w.doc_id]
                        ]
                        for w in windows
                    ]
                windows_candidates[task_type] = _candidates

        else:
            # retrieve candidates first
            if self.retriever is None:
                raise ValueError(
                    "No retriever was provided, please provide a retriever or candidates."
                )
            start_retr = time.time()
            for task_type, retriever in self.retriever.items():
                retriever_out = retriever.retrieve(
                    [w.text for w in windows],
                    text_pair=[w.doc_topic.text if w.doc_topic is not None else None for w in windows],
                    k=top_k,
                    batch_size=retriever_batch_size,
                    progress_bar=progress_bar,
                    **kwargs,
                )
                windows_candidates[task_type] = [
                    [p.document for p in predictions] for predictions in retriever_out
                ]
            end_retr = time.time()
            logger.info(f"Retrieval took {end_retr - start_retr} seconds.")

        # clean up None's
        windows_candidates = {
            t: c for t, c in windows_candidates.items() if c is not None
        }

        # add passage to the windows
        for task_type, task_candidates in windows_candidates.items():
            for window, candidates in zip(windows, task_candidates):
                # construct the candidates for the reader
                formatted_candidates = []
                for candidate in candidates:
                    window_candidate_text = candidate.text
                    for field in self.metadata_fields:
                        window_candidate_text += f"{candidate.metadata.get(field, '')}"
                    formatted_candidates.append(window_candidate_text)
                # create a member for the windows that is named like the task
                setattr(window, f"{task_type.value}_candidates", formatted_candidates)

        for task_type, task_candidates in windows_candidates.items():
            for window in blank_windows:
                setattr(window, f"{task_type.value}_candidates", [])
                setattr(window, "predicted_spans", [])
                setattr(window, "predicted_triples", [])
        if self.reader is not None:
            start_read = time.time()
            windows = self.reader.read(
                samples=windows,
                max_batch_size=reader_batch_size,
                annotation_type=annotation_type,
                progress_bar=progress_bar,
                **kwargs,
            )
            end_read = time.time()
            logger.info(f"Reading took {end_read - start_read} seconds.")
            # TODO: check merging behavior without a reader
            # do we want to merge windows if there is no reader?

            if self.window_size is not None and self.window_size not in ["sentence", "none"]:
                start_w = time.time()
                windows = windows + blank_windows
                windows.sort(key=lambda x: (x.doc_id, x.offset))
                merged_windows = self.window_manager.merge_windows(windows)
                end_w = time.time()
                logger.info(f"Merging took {end_w - start_w} seconds.")
            else:
                merged_windows = windows
        else:
            windows = windows + blank_windows
            windows.sort(key=lambda x: (x.doc_id, x.offset))
            merged_windows = windows

        # transform predictions into RelikOutput objects
        output = []
        for w in merged_windows:
            span_labels = []
            triples_labels = []
            # span extraction should always be present
            if getattr(w, "predicted_spans", None) is not None:
                span_labels = sorted(
                    [
                        Span(start=ss, end=se, label=sl, text=text[w.doc_id][ss:se])
                        if annotation_type == AnnotationType.CHAR
                        else Span(start=ss, end=se, label=sl, text=w.words[ss:se])
                        for ss, se, sl in w.predicted_spans
                    ],
                    key=lambda x: x.start,
                )
                # triple extraction is optional, if here add it
                if getattr(w, "predicted_triples", None) is not None:
                    triples_labels = [
                        Triples(
                            subject=span_labels[subj],
                            label=label,
                            object=span_labels[obj],
                            confidence=conf,
                        )
                        for subj, label, obj, conf in w.predicted_triples
                    ]
            # create the output
            sample_output = RelikOutput(
                text=text[w.doc_id],
                tokens=w.words,
                spans=span_labels,
                triples=triples_labels,
                candidates={
                    task_type: [
                        r.document_index.documents.get_document_from_text(c)
                        for c in getattr(w, f"{task_type.value}_candidates", [])
                        if r.document_index.documents.get_document_from_text(c) is not None
                    ]
                    for task_type, r in self.retriever.items()
                },
            )
            output.append(sample_output)

        # add windows to the output if requested
        # do we want to force windows to be returned if there is no reader?
        if return_also_windows:
            for i, sample_output in enumerate(output):
                sample_output.windows = [w for w in windows if w.doc_id == i]

        # if only one text was provided, return a single RelikOutput object
        if len(output) == 1:
            return output[0]

        return output

    @classmethod
    def from_pretrained(
        cls,
        model_name_or_dir: Union[str, os.PathLike],
        config_file_name: str = CONFIG_NAME,
        *args,
        **kwargs,
    ) -> "Relik":
        """
        Instantiate a `Relik` from a pretrained model.

        Args:
            model_name_or_dir (`str` or `os.PathLike`):
                The name or path of the model to load.
            config_file_name (`str`, `optional`, defaults to `config.yaml`):
                The name of the configuration file to load.
            *args:
                Additional positional arguments to pass to `OmegaConf.merge`.
            **kwargs:
                Additional keyword arguments to pass to `OmegaConf.merge`.

        Returns:
            `Relik`:
                The instantiated `Relik`.

        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)

        model_dir = from_cache(
            model_name_or_dir,
            filenames=[config_file_name],
            cache_dir=cache_dir,
            force_download=force_download,
        )

        config_path = model_dir / config_file_name
        if not config_path.exists():
            raise FileNotFoundError(
                f"Model configuration file not found at {config_path}."
            )

        # overwrite config with config_kwargs
        config = OmegaConf.load(config_path)
        # if kwargs is not None:
        config = OmegaConf.merge(config, OmegaConf.create(kwargs))
        # do we want to print the config? I like it
        logger.info(f"Loading Relik from {model_name_or_dir}")

        # load relik from config
        relik = hydra.utils.instantiate(config, _recursive_=False, *args)

        return relik

    def save_pretrained(
        self,
        output_dir: Union[str, os.PathLike],
        config: Optional[Dict[str, Any]] = None,
        config_file_name: Optional[str] = None,
        save_weights: bool = False,
        push_to_hub: bool = False,
        model_id: Optional[str] = None,
        organization: Optional[str] = None,
        repo_name: Optional[str] = None,
        retriever_model_id: Optional[str] = None,
        reader_model_id: Optional[str] = None,
        **kwargs,
    ):
        """
        Save the configuration of Relik to the specified directory as a YAML file.

        Args:
            output_dir (`str`):
                The directory to save the configuration file to.
            config (`Optional[Dict[str, Any]]`, `optional`):
                The configuration to save. If `None`, the current configuration will be
                saved. Defaults to `None`.
            config_file_name (`Optional[str]`, `optional`):
                The name of the configuration file. Defaults to `config.yaml`.
            save_weights (`bool`, `optional`):
                Whether to save the weights of the model. Defaults to `False`.
            push_to_hub (`bool`, `optional`):
                Whether to push the saved model to the hub. Defaults to `False`.
            model_id (`Optional[str]`, `optional`):
                The id of the model to push to the hub. If `None`, the name of the
                directory will be used. Defaults to `None`.
            organization (`Optional[str]`, `optional`):
                The organization to push the model to. Defaults to `None`.
            repo_name (`Optional[str]`, `optional`):
                The name of the repository to push the model to. Defaults to `None`.
            retriever_model_id (`Optional[str]`, `optional`):
                The id of the retriever model to push to the hub. If `None`, the name of the
                directory will be used. Defaults to `None`.
            reader_model_id (`Optional[str]`, `optional`):
                The id of the reader model to push to the hub. If `None`, the name of the
                directory will be used. Defaults to `None`.
            **kwargs:
                Additional keyword arguments to pass to `OmegaConf.save`.
        """
        # create the output directory
        output_dir = Path(output_dir)
        output_dir.mkdir(parents=True, exist_ok=True)

        retrievers_names: Dict[TaskType, Dict | None] = {
            TaskType.SPAN: {
                "question_encoder_name": None,
                "passage_encoder_name": None,
                "document_index_name": None,
            },
            TaskType.TRIPLET: {
                "question_encoder_name": None,
                "passage_encoder_name": None,
                "document_index_name": None,
            },
        }

        if save_weights:
            # save weights
            # retriever
            model_id = model_id or output_dir.name
            retriever_model_id = retriever_model_id or f"retriever-{model_id}"
            for task_type, retriever in self.retriever.items():
                if retriever is None:
                    continue
                task_retriever_model_id = f"{retriever_model_id}-{task_type.value}"
                question_encoder_name = f"{task_retriever_model_id}-question-encoder"
                passage_encoder_name = f"{task_retriever_model_id}-passage-encoder"
                document_index_name = f"{task_retriever_model_id}-index"
                logger.info(
                    f"Saving retriever to {output_dir / task_retriever_model_id}"
                )
                retriever.save_pretrained(
                    output_dir / task_retriever_model_id,
                    question_encoder_name=question_encoder_name,
                    passage_encoder_name=passage_encoder_name,
                    document_index_name=document_index_name,
                    push_to_hub=push_to_hub,
                    organization=organization,
                    **kwargs,
                )
                retrievers_names[task_type] = {
                    "reader_model_id": task_retriever_model_id,
                    "question_encoder_name": question_encoder_name,
                    "passage_encoder_name": passage_encoder_name,
                    "document_index_name": document_index_name,
                }

            # reader
            reader_model_id = reader_model_id or f"reader-{model_id}"
            logger.info(f"Saving reader to {output_dir / reader_model_id}")
            self.reader.save_pretrained(
                output_dir / reader_model_id,
                push_to_hub=push_to_hub,
                organization=organization,
                **kwargs,
            )

            if push_to_hub:
                user = organization or get_logged_in_username()
                # we need to update the config with the model ids that will
                # result from the push to hub
                for task_type, retriever_names in retrievers_names.items():
                    retriever_names[
                        "question_encoder_name"
                    ] = f"{user}/{retriever_names['question_encoder_name']}"
                    retriever_names[
                        "passage_encoder_name"
                    ] = f"{user}/{retriever_names['passage_encoder_name']}"
                    retriever_names[
                        "document_index_name"
                    ] = f"{user}/{retriever_names['document_index_name']}"
                # question_encoder_name = f"{user}/{question_encoder_name}"
                # passage_encoder_name = f"{user}/{passage_encoder_name}"
                # document_index_name = f"{user}/{document_index_name}"
                reader_model_id = f"{user}/{reader_model_id}"
            else:
                for task_type, retriever_names in retrievers_names.items():
                    retriever_names["question_encoder_name"] = (
                        output_dir / retriever_names["question_encoder_name"]
                    )
                    retriever_names["passage_encoder_name"] = (
                        output_dir / retriever_names["passage_encoder_name"]
                    )
                    retriever_names["document_index_name"] = (
                        output_dir / retriever_names["document_index_name"]
                    )
                reader_model_id = output_dir / reader_model_id
        else:
            # save config only
            for task_type, retriever_names in retrievers_names.items():
                retriever = self.retriever.get(task_type, None)
                if retriever is None:
                    continue
                retriever_names[
                    "question_encoder_name"
                ] = retriever.question_encoder.name_or_path
                retriever_names[
                    "passage_encoder_name"
                ] = retriever.passage_encoder.name_or_path
                retriever_names[
                    "document_index_name"
                ] = retriever.document_index.name_or_path

            reader_model_id = self.reader.name_or_path

        if config is None:
            # create a default config
            config = {
                "_target_": f"{self.__class__.__module__}.{self.__class__.__name__}"
            }
            if self.retriever is not None:
                config["retriever"] = {}
                for task_type, retriever in self.retriever.items():
                    if retriever is None:
                        continue
                    config["retriever"][task_type.value] = {
                        "_target_": f"{retriever.__class__.__module__}.{retriever.__class__.__name__}",
                    }
                    if retriever.question_encoder is not None:
                        config["retriever"][task_type.value][
                            "question_encoder"
                        ] = retrievers_names[task_type]["question_encoder_name"]
                    if (
                        retriever.passage_encoder is not None
                        and not retriever.passage_encoder_is_question_encoder
                    ):
                        config["retriever"][task_type.value][
                            "passage_encoder"
                        ] = retrievers_names[task_type]["passage_encoder_name"]
                    if retriever.document_index is not None:
                        config["retriever"][task_type.value][
                            "document_index"
                        ] = retrievers_names[task_type]["document_index_name"]
                if self.reader is not None:
                    config["reader"] = {
                        "_target_": f"{self.reader.__class__.__module__}.{self.reader.__class__.__name__}",
                        "transformer_model": reader_model_id,
                    }

            # these are model-specific and should be saved
            config["task"] = self.task
            config["metadata_fields"] = self.metadata_fields
            config["top_k"] = self.top_k
            config["window_size"] = self.window_size
            config["window_stride"] = self.window_stride

        config_file_name = config_file_name or CONFIG_NAME

        logger.info(f"Saving relik config to {output_dir / config_file_name}")

        OmegaConf.save(config, output_dir / config_file_name)

        if push_to_hub:
            # push to hub
            logger.info("Pushing to hub")
            model_id = model_id or output_dir.name
            upload(
                output_dir,
                model_id,
                filenames=[config_file_name],
                organization=organization,
                repo_name=repo_name,
            )