File size: 34,447 Bytes
626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
import logging
from typing import (
Any,
Callable,
Dict,
Generator,
Iterator,
List,
NamedTuple,
Optional,
Tuple,
Union,
)
import numpy as np
import torch
from reader.data.relik_reader_data_utils import (
add_noise_to_value,
batchify,
batchify_matrices,
batchify_tensor,
chunks,
flatten,
)
from reader.data.relik_reader_sample import RelikReaderSample, load_relik_reader_samples
from torch.utils.data import IterableDataset
from transformers import AutoTokenizer
from relik.reader.utils.special_symbols import NME_SYMBOL
logger = logging.getLogger(__name__)
class TokenizationOutput(NamedTuple):
input_ids: torch.Tensor
attention_mask: torch.Tensor
token_type_ids: torch.Tensor
prediction_mask: torch.Tensor
special_symbols_mask: torch.Tensor
special_symbols_mask_entities: torch.Tensor
class RelikREDataset(IterableDataset):
def __init__(
self,
dataset_path: str,
materialize_samples: bool,
transformer_model: str,
special_symbols: List[str],
shuffle_candidates: Optional[Union[bool, float]],
flip_candidates: Optional[Union[bool, float]],
relations_definitions: Union[str, Dict[str, str]],
for_inference: bool,
entities_definitions: Optional[Union[str, Dict[str, str]]] = None,
special_symbols_entities: Optional[List[str]] = None,
noise_param: float = 0.1,
sorting_fields: Optional[str] = None,
tokens_per_batch: int = 2048,
batch_size: int = None,
max_batch_size: int = 128,
section_size: int = 50_000,
prebatch: bool = True,
max_candidates: int = 0,
add_gold_candidates: bool = True,
use_nme: bool = True,
min_length: int = 5,
max_length: int = 2048,
model_max_length: int = 1000,
skip_empty_training_samples: bool = True,
drop_last: bool = False,
samples: Optional[Iterator[RelikReaderSample]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.dataset_path = dataset_path
self.materialize_samples = materialize_samples
self.samples: Optional[List[RelikReaderSample]] = None
if self.materialize_samples:
self.samples = list()
self.tokenizer = self._build_tokenizer(transformer_model, special_symbols)
self.special_symbols = special_symbols
self.special_symbols_entities = special_symbols_entities
self.shuffle_candidates = shuffle_candidates
self.flip_candidates = flip_candidates
self.for_inference = for_inference
self.noise_param = noise_param
self.batching_fields = ["input_ids"]
self.sorting_fields = (
sorting_fields if sorting_fields is not None else self.batching_fields
)
# open relations definitions file if needed
if type(relations_definitions) == str:
relations_definitions = {
line.split("\t")[0]: line.split("\t")[1]
for line in open(relations_definitions)
}
self.max_candidates = max_candidates
self.relations_definitions = relations_definitions
self.entities_definitions = entities_definitions
self.add_gold_candidates = add_gold_candidates
self.use_nme = use_nme
self.min_length = min_length
self.max_length = max_length
self.model_max_length = (
model_max_length
if model_max_length < self.tokenizer.model_max_length
else self.tokenizer.model_max_length
)
self.transformer_model = transformer_model
self.skip_empty_training_samples = skip_empty_training_samples
self.drop_last = drop_last
self.samples = samples
self.tokens_per_batch = tokens_per_batch
self.batch_size = batch_size
self.max_batch_size = max_batch_size
self.section_size = section_size
self.prebatch = prebatch
def _build_tokenizer(self, transformer_model: str, special_symbols: List[str]):
return AutoTokenizer.from_pretrained(
transformer_model,
additional_special_tokens=[ss for ss in special_symbols],
add_prefix_space=True,
)
@property
def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]:
fields_batchers = {
"input_ids": lambda x: batchify(
x, padding_value=self.tokenizer.pad_token_id
),
"attention_mask": lambda x: batchify(x, padding_value=0),
"token_type_ids": lambda x: batchify(x, padding_value=0),
"prediction_mask": lambda x: batchify(x, padding_value=1),
"global_attention": lambda x: batchify(x, padding_value=0),
"token2word": None,
"sample": None,
"special_symbols_mask": lambda x: batchify(x, padding_value=False),
"special_symbols_mask_entities": lambda x: batchify(x, padding_value=False),
"start_labels": lambda x: batchify(x, padding_value=-100),
"end_labels": lambda x: batchify_matrices(x, padding_value=-100),
"disambiguation_labels": lambda x: batchify(x, padding_value=-100),
"relation_labels": lambda x: batchify_tensor(x, padding_value=-100),
"predictable_candidates": None,
}
if "roberta" in self.transformer_model:
del fields_batchers["token_type_ids"]
return fields_batchers
def _build_input_ids(
self, sentence_input_ids: List[int], candidates_input_ids: List[List[int]]
) -> List[int]:
return (
[self.tokenizer.cls_token_id]
+ sentence_input_ids
+ [self.tokenizer.sep_token_id]
+ flatten(candidates_input_ids)
+ [self.tokenizer.sep_token_id]
)
def _get_special_symbols_mask(self, input_ids: torch.Tensor) -> torch.Tensor:
special_symbols_mask = input_ids >= (
len(self.tokenizer)
- len(self.special_symbols + self.special_symbols_entities)
)
special_symbols_mask[0] = True
return special_symbols_mask
def _build_tokenizer_essentials(
self, input_ids, original_sequence
) -> TokenizationOutput:
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
total_sequence_len = len(input_ids)
predictable_sentence_len = len(original_sequence)
# token type ids
token_type_ids = torch.cat(
[
input_ids.new_zeros(
predictable_sentence_len + 2
), # original sentence bpes + CLS and SEP
input_ids.new_ones(total_sequence_len - predictable_sentence_len - 2),
]
)
# prediction mask -> boolean on tokens that are predictable
prediction_mask = torch.tensor(
[1]
+ ([0] * predictable_sentence_len)
+ ([1] * (total_sequence_len - predictable_sentence_len - 1))
)
assert len(prediction_mask) == len(input_ids)
# special symbols mask
special_symbols_mask = input_ids >= (
len(self.tokenizer)
- len(self.special_symbols) # + self.special_symbols_entities)
)
if self.entities_definitions is not None:
# select only the first N true values where N is len(entities_definitions)
special_symbols_mask_entities = special_symbols_mask.clone()
special_symbols_mask_entities[
special_symbols_mask_entities.cumsum(0) > len(self.entities_definitions)
] = False
special_symbols_mask = special_symbols_mask ^ special_symbols_mask_entities
else:
special_symbols_mask_entities = special_symbols_mask.clone()
return TokenizationOutput(
input_ids,
attention_mask,
token_type_ids,
prediction_mask,
special_symbols_mask,
special_symbols_mask_entities,
)
def _build_labels(
self,
sample,
tokenization_output: TokenizationOutput,
) -> Tuple[torch.Tensor, torch.Tensor]:
start_labels = [0] * len(tokenization_output.input_ids)
end_labels = []
sample.entities.sort(key=lambda x: (x[0], x[1]))
prev_start_bpe = -1
num_repeat_start = 0
if self.entities_definitions:
sample.entities = [(ce[0], ce[1], ce[2]) for ce in sample.entities]
sample.entity_candidates = list(self.entities_definitions.keys())
disambiguation_labels = torch.zeros(
len(sample.entities),
len(sample.entity_candidates) + len(sample.candidates),
)
else:
sample.entities = [(ce[0], ce[1], "") for ce in sample.entities]
disambiguation_labels = torch.zeros(
len(sample.entities), len(sample.candidates)
)
ignored_labels_indices = tokenization_output.prediction_mask == 1
for idx, c_ent in enumerate(sample.entities):
start_bpe = sample.word2token[c_ent[0]][0] + 1
end_bpe = sample.word2token[c_ent[1] - 1][-1] + 1
class_index = idx
start_labels[start_bpe] = class_index + 1 # +1 for the NONE class
if start_bpe != prev_start_bpe:
end_labels.append([0] * len(tokenization_output.input_ids))
# end_labels[-1][:start_bpe] = [-100] * start_bpe
end_labels[-1][end_bpe] = class_index + 1
else:
end_labels[-1][end_bpe] = class_index + 1
num_repeat_start += 1
if self.entities_definitions:
entity_type_idx = sample.entity_candidates.index(c_ent[2])
disambiguation_labels[idx, entity_type_idx] = 1
prev_start_bpe = start_bpe
start_labels = torch.tensor(start_labels, dtype=torch.long)
start_labels[ignored_labels_indices] = -100
end_labels = torch.tensor(end_labels, dtype=torch.long)
end_labels[ignored_labels_indices.repeat(len(end_labels), 1)] = -100
relation_labels = torch.zeros(
len(sample.entities), len(sample.entities), len(sample.candidates)
)
# sample.relations = []
for re in sample.triplets:
if re["relation"]["name"] not in sample.candidates:
re_class_index = len(sample.candidates) - 1
else:
re_class_index = sample.candidates.index(
re["relation"]["name"]
) # should remove this +1
if self.entities_definitions:
subject_class_index = sample.entities.index(
(
re["subject"]["start"],
re["subject"]["end"],
re["subject"]["type"],
)
)
object_class_index = sample.entities.index(
(re["object"]["start"], re["object"]["end"], re["object"]["type"])
)
else:
subject_class_index = sample.entities.index(
(re["subject"]["start"], re["subject"]["end"], "")
)
object_class_index = sample.entities.index(
(re["object"]["start"], re["object"]["end"], "")
)
relation_labels[subject_class_index, object_class_index, re_class_index] = 1
if self.entities_definitions:
disambiguation_labels[
subject_class_index, re_class_index + len(sample.entity_candidates)
] = 1
disambiguation_labels[
object_class_index, re_class_index + len(sample.entity_candidates)
] = 1
# sample.relations.append([re['subject']['start'], re['subject']['end'], re['subject']['type'], re['relation']['name'], re['object']['start'], re['object']['end'], re['object']['type']])
else:
disambiguation_labels[subject_class_index, re_class_index] = 1
disambiguation_labels[object_class_index, re_class_index] = 1
# sample.relations.append([re['subject']['start'], re['subject']['end'], "", re['relation']['name'], re['object']['start'], re['object']['end'], ""])
return start_labels, end_labels, disambiguation_labels, relation_labels
def __iter__(self):
dataset_iterator = self.dataset_iterator_func()
current_dataset_elements = []
i = None
for i, dataset_elem in enumerate(dataset_iterator, start=1):
if (
self.section_size is not None
and len(current_dataset_elements) == self.section_size
):
for batch in self.materialize_batches(current_dataset_elements):
yield batch
current_dataset_elements = []
current_dataset_elements.append(dataset_elem)
if i % 50_000 == 0:
logger.info(f"Processed: {i} number of elements")
if len(current_dataset_elements) != 0:
for batch in self.materialize_batches(current_dataset_elements):
yield batch
if i is not None:
logger.info(f"Dataset finished: {i} number of elements processed")
else:
logger.warning("Dataset empty")
def dataset_iterator_func(self):
data_samples = (
load_relik_reader_samples(self.dataset_path)
if self.samples is None
else self.samples
)
for sample in data_samples:
# input sentence tokenization
input_tokenized = self.tokenizer(
sample.tokens,
return_offsets_mapping=True,
add_special_tokens=False,
is_split_into_words=True,
)
input_subwords = input_tokenized["input_ids"]
offsets = input_tokenized["offset_mapping"]
token2word = []
word2token = {}
count = 0
for i, offset in enumerate(offsets):
if offset[0] == 0:
token2word.append(i - count)
word2token[i - count] = [i]
else:
token2word.append(token2word[-1])
word2token[token2word[-1]].append(i)
count += 1
sample.token2word = token2word
sample.word2token = word2token
# input_subwords = sample.tokens[1:-1] # removing special tokens
candidates_symbols = self.special_symbols
if self.max_candidates > 0:
# truncate candidates
sample.candidates = sample.candidates[: self.max_candidates]
# add NME as a possible candidate
if self.use_nme:
sample.candidates.insert(0, NME_SYMBOL)
# training time sample mods
if not self.for_inference:
# check whether the sample has labels if not skip
if (
sample.triplets is None or len(sample.triplets) == 0
) and self.skip_empty_training_samples:
logger.warning(
"Sample {} has no labels, skipping".format(sample.sample_id)
)
continue
# add gold candidates if missing
if self.add_gold_candidates:
candidates_set = set(sample.candidates)
candidates_to_add = []
for candidate_title in sample.triplets:
if candidate_title["relation"]["name"] not in candidates_set:
candidates_to_add.append(
candidate_title["relation"]["name"]
)
if len(candidates_to_add) > 0:
# replacing last candidates with the gold ones
# this is done in order to preserve the ordering
added_gold_candidates = 0
gold_candidates_titles_set = set(
set(ct["relation"]["name"] for ct in sample.triplets)
)
for i in reversed(range(len(sample.candidates))):
if (
sample.candidates[i] not in gold_candidates_titles_set
and sample.candidates[i] != NME_SYMBOL
):
sample.candidates[i] = candidates_to_add[
added_gold_candidates
]
added_gold_candidates += 1
if len(candidates_to_add) == added_gold_candidates:
break
candidates_still_to_add = (
len(candidates_to_add) - added_gold_candidates
)
while (
len(sample.candidates) <= len(candidates_symbols)
and candidates_still_to_add != 0
):
sample.candidates.append(
candidates_to_add[added_gold_candidates]
)
added_gold_candidates += 1
candidates_still_to_add -= 1
# shuffle candidates
if (
isinstance(self.shuffle_candidates, bool)
and self.shuffle_candidates
) or (
isinstance(self.shuffle_candidates, float)
and np.random.uniform() < self.shuffle_candidates
):
np.random.shuffle(sample.candidates)
if NME_SYMBOL in sample.candidates:
sample.candidates.remove(NME_SYMBOL)
sample.candidates.insert(0, NME_SYMBOL)
# flip candidates
if (
isinstance(self.flip_candidates, bool) and self.flip_candidates
) or (
isinstance(self.flip_candidates, float)
and np.random.uniform() < self.flip_candidates
):
for i in range(len(sample.candidates) - 1):
if np.random.uniform() < 0.5:
sample.candidates[i], sample.candidates[i + 1] = (
sample.candidates[i + 1],
sample.candidates[i],
)
if NME_SYMBOL in sample.candidates:
sample.candidates.remove(NME_SYMBOL)
sample.candidates.insert(0, NME_SYMBOL)
# candidates encoding
candidates_symbols = candidates_symbols[: len(sample.candidates)]
relations_defs = [
"{} {}".format(cs, self.relations_definitions[ct])
if ct != NME_SYMBOL
else NME_SYMBOL
for cs, ct in zip(candidates_symbols, sample.candidates)
]
if self.entities_definitions is not None:
candidates_entities_symbols = list(self.special_symbols_entities)
candidates_entities_symbols = candidates_entities_symbols[
: len(self.entities_definitions)
]
entity_defs = [
"{} {}".format(cs, self.entities_definitions[ct])
for cs, ct in zip(
candidates_entities_symbols, self.entities_definitions.keys()
)
]
relations_defs = (
entity_defs + [self.tokenizer.sep_token] + relations_defs
)
candidates_encoding_result = self.tokenizer.batch_encode_plus(
relations_defs,
add_special_tokens=False,
).input_ids
# drop candidates if the number of input tokens is too long for the model
if (
sum(map(len, candidates_encoding_result))
+ len(input_subwords)
+ 20 # + 20 special tokens
> self.model_max_length
):
if self.for_inference:
acceptable_tokens_from_candidates = (
self.model_max_length - 20 - len(input_subwords)
)
while (
cum_len + len(candidates_encoding_result[i])
< acceptable_tokens_from_candidates
):
cum_len += len(candidates_encoding_result[i])
i += 1
candidates_encoding_result = candidates_encoding_result[:i]
if self.entities_definitions is not None:
candidates_symbols = candidates_symbols[
: i - len(self.entities_definitions)
]
sample.candidates = sample.candidates[
: i - len(self.entities_definitions)
]
else:
candidates_symbols = candidates_symbols[:i]
sample.candidates = sample.candidates[:i]
else:
gold_candidates_set = set(
[wl["relation"]["name"] for wl in sample.triplets]
)
gold_candidates_indices = [
i
for i, wc in enumerate(sample.candidates)
if wc in gold_candidates_set
]
if self.entities_definitions is not None:
gold_candidates_indices = [
i + len(self.entities_definitions)
for i in gold_candidates_indices
]
# add entities indices
gold_candidates_indices = gold_candidates_indices + list(
range(len(self.entities_definitions))
)
necessary_taken_tokens = sum(
map(
len,
[
candidates_encoding_result[i]
for i in gold_candidates_indices
],
)
)
acceptable_tokens_from_candidates = (
self.model_max_length
- 20
- len(input_subwords)
- necessary_taken_tokens
)
assert acceptable_tokens_from_candidates > 0
i = 0
cum_len = 0
while (
cum_len + len(candidates_encoding_result[i])
< acceptable_tokens_from_candidates
):
if i not in gold_candidates_indices:
cum_len += len(candidates_encoding_result[i])
i += 1
new_indices = sorted(
list(set(list(range(i)) + gold_candidates_indices))
)
np.random.shuffle(new_indices)
candidates_encoding_result = [
candidates_encoding_result[i] for i in new_indices
]
if self.entities_definitions is not None:
sample.candidates = [
sample.candidates[i - len(self.entities_definitions)]
for i in new_indices
]
candidates_symbols = candidates_symbols[
: i - len(self.entities_definitions)
]
else:
candidates_symbols = [
candidates_symbols[i] for i in new_indices
]
sample.window_candidates = [
sample.window_candidates[i] for i in new_indices
]
if len(sample.candidates) == 0:
logger.warning(
"Sample {} has no candidates after truncation due to max length".format(
sample.sample_id
)
)
continue
# final input_ids build
input_ids = self._build_input_ids(
sentence_input_ids=input_subwords,
candidates_input_ids=candidates_encoding_result,
)
# complete input building (e.g. attention / prediction mask)
tokenization_output = self._build_tokenizer_essentials(
input_ids, input_subwords
)
# labels creation
start_labels, end_labels, disambiguation_labels, relation_labels = (
None,
None,
None,
None,
)
if sample.entities is not None and len(sample.entities) > 0:
(
start_labels,
end_labels,
disambiguation_labels,
relation_labels,
) = self._build_labels(
sample,
tokenization_output,
)
yield {
"input_ids": tokenization_output.input_ids,
"attention_mask": tokenization_output.attention_mask,
"token_type_ids": tokenization_output.token_type_ids,
"prediction_mask": tokenization_output.prediction_mask,
"special_symbols_mask": tokenization_output.special_symbols_mask,
"special_symbols_mask_entities": tokenization_output.special_symbols_mask_entities,
"sample": sample,
"start_labels": start_labels,
"end_labels": end_labels,
"disambiguation_labels": disambiguation_labels,
"relation_labels": relation_labels,
"predictable_candidates": candidates_symbols,
}
def preshuffle_elements(self, dataset_elements: List):
# This shuffling is done so that when using the sorting function,
# if it is deterministic given a collection and its order, we will
# make the whole operation not deterministic anymore.
# Basically, the aim is not to build every time the same batches.
if not self.for_inference:
dataset_elements = np.random.permutation(dataset_elements)
sorting_fn = (
lambda elem: add_noise_to_value(
sum(len(elem[k]) for k in self.sorting_fields),
noise_param=self.noise_param,
)
if not self.for_inference
else sum(len(elem[k]) for k in self.sorting_fields)
)
dataset_elements = sorted(dataset_elements, key=sorting_fn)
if self.for_inference:
return dataset_elements
ds = list(chunks(dataset_elements, 64)) # todo: modified
np.random.shuffle(ds)
return flatten(ds)
def materialize_batches(
self, dataset_elements: List[Dict[str, Any]]
) -> Generator[Dict[str, Any], None, None]:
if self.prebatch:
dataset_elements = self.preshuffle_elements(dataset_elements)
current_batch = []
# function that creates a batch from the 'current_batch' list
def output_batch() -> Dict[str, Any]:
assert (
len(
set([len(elem["predictable_candidates"]) for elem in current_batch])
)
== 1
), " ".join(
map(
str, [len(elem["predictable_candidates"]) for elem in current_batch]
)
)
batch_dict = dict()
de_values_by_field = {
fn: [de[fn] for de in current_batch if fn in de]
for fn in self.fields_batcher
}
# in case you provide fields batchers but in the batch
# there are no elements for that field
de_values_by_field = {
fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0
}
assert len(set([len(v) for v in de_values_by_field.values()]))
# todo: maybe we should report the user about possible
# fields filtering due to "None" instances
de_values_by_field = {
fn: fvs
for fn, fvs in de_values_by_field.items()
if all([fv is not None for fv in fvs])
}
for field_name, field_values in de_values_by_field.items():
field_batch = (
self.fields_batcher[field_name](field_values)
if self.fields_batcher[field_name] is not None
else field_values
)
batch_dict[field_name] = field_batch
return batch_dict
max_len_discards, min_len_discards = 0, 0
should_token_batch = self.batch_size is None
curr_pred_elements = -1
for de in dataset_elements:
if (
should_token_batch
and self.max_batch_size != -1
and len(current_batch) == self.max_batch_size
) or (not should_token_batch and len(current_batch) == self.batch_size):
yield output_batch()
current_batch = []
curr_pred_elements = -1
# todo support max length (and min length) as dicts
too_long_fields = [
k
for k in de
if self.max_length != -1
and torch.is_tensor(de[k])
and len(de[k]) > self.max_length
]
if len(too_long_fields) > 0:
max_len_discards += 1
continue
too_short_fields = [
k
for k in de
if self.min_length != -1
and torch.is_tensor(de[k])
and len(de[k]) < self.min_length
]
if len(too_short_fields) > 0:
min_len_discards += 1
continue
if should_token_batch:
de_len = sum(len(de[k]) for k in self.batching_fields)
future_max_len = max(
de_len,
max(
[
sum(len(bde[k]) for k in self.batching_fields)
for bde in current_batch
],
default=0,
),
)
future_tokens_per_batch = future_max_len * (len(current_batch) + 1)
num_predictable_candidates = len(de["predictable_candidates"])
if len(current_batch) > 0 and (
future_tokens_per_batch >= self.tokens_per_batch
or (
num_predictable_candidates != curr_pred_elements
and curr_pred_elements != -1
)
):
yield output_batch()
current_batch = []
current_batch.append(de)
curr_pred_elements = len(de["predictable_candidates"])
if len(current_batch) != 0 and not self.drop_last:
yield output_batch()
if max_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were "
f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the "
f"sample length exceeds the maximum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {max_len_discards} elements were "
f"discarded since longer than max length {self.max_length}"
)
if min_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were "
f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the "
f"sample length is shorter than the minimum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {min_len_discards} elements were "
f"discarded since shorter than min length {self.min_length}"
)
def main():
special_symbols = [NME_SYMBOL] + [f"R-{i}" for i in range(50)]
relik_dataset = RelikREDataset(
"/home/huguetcabot/alby-re/alby/data/nyt-alby+/valid.jsonl",
materialize_samples=False,
transformer_model="microsoft/deberta-v3-base",
special_symbols=special_symbols,
shuffle_candidates=False,
flip_candidates=False,
for_inference=True,
)
for batch in relik_dataset:
print(batch)
exit(0)
if __name__ == "__main__":
main()
|