File size: 10,396 Bytes
2f044c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional, Union
import lightning as pl
import torch
from lightning.pytorch.trainer.states import RunningStage
from relik.common.log import get_logger
from relik.retriever.callbacks.base import NLPTemplateCallback, PredictionCallback
from relik.retriever.pytorch_modules.hf import GoldenRetrieverModel
logger = get_logger(__name__, level=logging.INFO)
class SavePredictionsCallback(NLPTemplateCallback):
def __init__(
self,
saving_dir: str | os.PathLike | None = None,
verbose: bool = False,
*args,
**kwargs,
):
super().__init__()
self.saving_dir = saving_dir
self.verbose = verbose
@torch.no_grad()
def __call__(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
predictions: Dict,
callback: PredictionCallback,
*args,
**kwargs,
) -> dict:
# write the predictions to a file inside the experiment folder
if self.saving_dir is None and trainer.logger is None:
logger.info(
"You need to specify an output directory (`saving_dir`) or a logger to save the predictions.\n"
"Skipping saving predictions."
)
return {}
datasets = callback.datasets
for dataloader_idx, dataloader_predictions in predictions.items():
# save to file
if self.saving_dir is not None:
prediction_folder = Path(self.saving_dir)
else:
try:
prediction_folder = (
Path(trainer.logger.experiment.dir) / "predictions"
)
except Exception:
logger.info(
"You need to specify an output directory (`saving_dir`) or a logger to save the predictions.\n"
"Skipping saving predictions."
)
return {}
prediction_folder.mkdir(exist_ok=True)
predictions_path = (
prediction_folder
/ f"{datasets[dataloader_idx].name}_{dataloader_idx}.json"
)
if self.verbose:
logger.info(f"Saving predictions to {predictions_path}")
with open(predictions_path, "w") as f:
for prediction in dataloader_predictions:
for k, v in prediction.items():
if isinstance(v, set):
prediction[k] = list(v)
f.write(json.dumps(prediction) + "\n")
class ResetModelCallback(pl.Callback):
def __init__(
self,
question_encoder: str,
passage_encoder: str | None = None,
verbose: bool = True,
) -> None:
super().__init__()
self.question_encoder = question_encoder
self.passage_encoder = passage_encoder
self.verbose = verbose
def on_train_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, *args, **kwargs
) -> None:
if trainer.current_epoch == 0:
if self.verbose:
logger.info("Current epoch is 0, skipping resetting model")
return
if self.verbose:
logger.info("Resetting model, optimizer and lr scheduler")
# reload model from scratch
previous_device = pl_module.device
trainer.model.model.question_encoder = GoldenRetrieverModel.from_pretrained(
self.question_encoder
)
trainer.model.model.question_encoder.to(previous_device)
if self.passage_encoder is not None:
trainer.model.model.passage_encoder = GoldenRetrieverModel.from_pretrained(
self.passage_encoder
)
trainer.model.model.passage_encoder.to(previous_device)
trainer.strategy.setup_optimizers(trainer)
class FreeUpIndexerVRAMCallback(pl.Callback):
def __call__(
self,
pl_module: pl.LightningModule,
*args,
**kwargs,
) -> Any:
logger.info("Freeing up GPU memory")
# remove the index from the GPU memory
# remove the embeddings from the GPU memory first
if pl_module.model.document_index is not None:
if pl_module.model.document_index.embeddings is not None:
try:
pl_module.model.document_index.embeddings.cpu()
except Exception:
logger.warning(
"Could not move embeddings to CPU. Skipping freeing up VRAM."
)
pass
pl_module.model.document_index.embeddings = None
import gc
gc.collect()
torch.cuda.empty_cache()
def on_train_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, *args, **kwargs
) -> None:
return self(pl_module)
def on_test_epoch_start(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, *args, **kwargs
) -> None:
return self(pl_module)
class ShuffleTrainDatasetCallback(pl.Callback):
def __init__(self, seed: int = 42, verbose: bool = True) -> None:
super().__init__()
self.seed = seed
self.verbose = verbose
self.previous_epoch = -1
def on_validation_epoch_end(self, trainer: pl.Trainer, *args, **kwargs):
if self.verbose:
if trainer.current_epoch != self.previous_epoch:
logger.info(f"Shuffling train dataset at epoch {trainer.current_epoch}")
# logger.info(f"Shuffling train dataset at epoch {trainer.current_epoch}")
if trainer.current_epoch != self.previous_epoch:
trainer.datamodule.train_dataset.shuffle_data(
seed=self.seed + trainer.current_epoch + 1
)
self.previous_epoch = trainer.current_epoch
class PrefetchTrainDatasetCallback(pl.Callback):
def __init__(self, verbose: bool = True) -> None:
super().__init__()
self.verbose = verbose
# self.previous_epoch = -1
def on_validation_epoch_end(self, trainer: pl.Trainer, *args, **kwargs):
if trainer.datamodule.train_dataset.prefetch_batches:
if self.verbose:
# if trainer.current_epoch != self.previous_epoch:
logger.info(
f"Prefetching train dataset at epoch {trainer.current_epoch}"
)
# if trainer.current_epoch != self.previous_epoch:
trainer.datamodule.train_dataset.prefetch()
self.previous_epoch = trainer.current_epoch
class SubsampleTrainDatasetCallback(pl.Callback):
def __init__(self, seed: int = 43, verbose: bool = True) -> None:
super().__init__()
self.seed = seed
self.verbose = verbose
def on_validation_epoch_end(self, trainer: pl.Trainer, *args, **kwargs):
if self.verbose:
logger.info(f"Subsampling train dataset at epoch {trainer.current_epoch}")
trainer.datamodule.train_dataset.random_subsample(
seed=self.seed + trainer.current_epoch + 1
)
class SaveRetrieverCallback(pl.Callback):
def __init__(
self,
saving_dir: str | os.PathLike | None = None,
verbose: bool = True,
*args,
**kwargs,
):
super().__init__()
self.saving_dir = saving_dir
self.verbose = verbose
self.free_up_indexer_callback = FreeUpIndexerVRAMCallback()
@torch.no_grad()
def __call__(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
*args,
**kwargs,
):
if self.saving_dir is None and trainer.logger is None:
logger.info(
"You need to specify an output directory (`saving_dir`) or a logger to save the retriever.\n"
"Skipping saving retriever."
)
return
if self.saving_dir is not None:
retriever_folder = Path(self.saving_dir)
else:
try:
retriever_folder = Path(trainer.logger.experiment.dir) / "retriever"
except Exception:
logger.info(
"You need to specify an output directory (`saving_dir`) or a logger to save the "
"retriever.\nSkipping saving retriever."
)
return
retriever_folder.mkdir(exist_ok=True, parents=True)
if self.verbose:
logger.info(f"Saving retriever to {retriever_folder}")
pl_module.model.save_pretrained(retriever_folder)
def on_save_checkpoint(
self,
trainer: pl.Trainer,
pl_module: pl.LightningModule,
checkpoint: Dict[str, Any],
):
self(trainer, pl_module)
# self.free_up_indexer_callback(pl_module)
class SampleNegativesDatasetCallback(pl.Callback):
def __init__(self, seed: int = 42, verbose: bool = True) -> None:
super().__init__()
self.seed = seed
self.verbose = verbose
def on_validation_epoch_end(self, trainer: pl.Trainer, *args, **kwargs):
if self.verbose:
f"Sampling negatives for train dataset at epoch {trainer.current_epoch}"
trainer.datamodule.train_dataset.sample_dataset_negatives(
seed=self.seed + trainer.current_epoch
)
class SubsampleDataCallback(pl.Callback):
def __init__(self, seed: int = 42, verbose: bool = True) -> None:
super().__init__()
self.seed = seed
self.verbose = verbose
def on_validation_epoch_start(self, trainer: pl.Trainer, *args, **kwargs):
if self.verbose:
f"Subsampling data for train dataset at epoch {trainer.current_epoch}"
if trainer.state.stage == RunningStage.SANITY_CHECKING:
return
trainer.datamodule.train_dataset.subsample_data(
seed=self.seed + trainer.current_epoch
)
def on_fit_start(self, trainer: pl.Trainer, *args, **kwargs):
if self.verbose:
f"Subsampling data for train dataset at epoch {trainer.current_epoch}"
trainer.datamodule.train_dataset.subsample_data(
seed=self.seed + trainer.current_epoch
)
|